
M A R K L I U

M A K E
P Y T H O N TA L K

B U I L D A P P S W I T H V O I C E C O N T R O L

A N D S P E E C H R E C O G N I T I O N

San Francisco

M A K E
P Y T H O N TA L K

B u i l d A p p s w i t h
Vo i c e C o n t r o l a n d

S p e e c h R e c o g n i t i o n

by Mark L iu

MAKE PYTHON TALK. Copyright © 2021 by Mark Liu.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0156-0 (print)
ISBN-13: 978-1-7185-0157-7 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editor: Paula Williamson
Developmental Editor: Liz Chadwick
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Noah Spahn
Copyeditor: Sharon Wilkey
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Paula Fleming
Indexer: JoAnne Burek

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2021938060

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

Dedicated to Ivey, Andrew, and all
MS Finance students (past, present, and

future) at the University of Kentucky.

 About the Author
Dr. Mark H. Liu is the founding director of the Master of Science in Finance
program at the University of Kentucky, where he holds the title of Associate
Professor of Finance with tenure. He has a Ph.D. in finance from Boston
College, and has been published in top finance journals, including Journal of
Financial Economics, Journal of Financial and Quantitative Analysis, and Journal
of Corporate Finance. Dr. Liu has more than 20 years of coding experience in
C++, SAS, Stata, and Python and runs Python workshops for Finance master
students at the University of Kentucky. He has also incorporated Python in
finance courses he is teaching.

 About the Technical Reviewer
Noah Spahn is presently enjoying the role of Software Engineer for the
Computer Security Group at UCSB (known as SecLab) and their world-
famous hacking team: Shellphish. Prior to his current academic role, he
ran his own consulting business, allowing him to work on a wide variety of
projects, with a broad spectrum and languages, and collaborate with vary-
ing teams. Fluency in Python has opened many doors for Spahn, providing
the opportunity to contribute to the areas of natural sciences (ocean-
ography, ecohydrology, seismology), computer science (network traffic
analysis, machine learning, binary analysis), open-source projects (NASA,
Kubernetes, and others), as well as many practical applications. Spahn
holds a Master of Software Engineering degree from California State
University, Fullerton. He has taught courses in Python at the University of
California and Santa Barbara’s interdisciplinary Collaboratory, and has
taught an upper-division course on the concepts of programming lan-
guages at Westmont College. Spahn is glad to teach anyone who is interested
in learning.

B R I E F C O N T E N T S

Acknowledgments .xvii

Introduction . xix

PART I: GETTING STARTED .1

Chapter 1: Setting Up Python, Anaconda, and Spyder . 3

Chapter 2: Python Refresher . 13

PART II: LEARNING TO TALK . .53

Chapter 3: Speech Recognition . 55

Chapter 4: Make Python Talk . 73

Chapter 5: Speaking Applications . 89

Chapter 6: Web Scraping Podcasts, Radios, and Videos . 111

Chapter 7: Building a Virtual Personal Assistant . 133

Chapter 8: Know-It-All VPA . 155

PART III: INTERACTIVE GAMES .167

Chapter 9: Graphics and Animation with the turtle Module . 169

Chapter 10: Tic-Tac-Toe . 189

Chapter 11: Connect Four . 207

Chapter 12: Guess-the-Word Game . 227

Chapter 13: Smart Games: Adding Intelligence . 241

PART IV: GOING FURTHER .269

Chapter 14: Financial Applications . 271

Chapter 15: Stock Market Watch . 295

Chapter 16: Use World Languages . 309

viii Brief Contents

Chapter 17: Ultimate Virtual Personal Assistant . 321

Appendix A: Install Modules to Play Audio Files . 347

Appendix B: Suggested Answers to End-of-Chapter Exercises . 353

Index . 369

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS XVII
INTRODUCTION XIX

PART I: GETTING STARTED 1

1
SETTING UP PYTHON, ANACONDA, AND SPYDER 3
Introducing Anaconda and Spyder . 4
Installing Anaconda and Spyder . 4

Install Anaconda and Spyder in Windows . 4
Install Anaconda and Spyder in macOS . 5
Install Anaconda and Spyder in Linux . 5

Using Spyder . 6
Write Python in Spyder . 6
Inspect Code in Spyder . 8

Understanding Coding in Python . 9
Python Syntax . 9
Basic Operations in Python . 10

Summary . 11
End-of-Chapter Exercises . 11

2
PYTHON REFRESHER 13
Variables and Values . 14

Strings . 14
Floats . 15
Integers . 15
Bools . 16
Convert Variable Types . 17
Rules for Variable Names . 18

Loops and Conditional Execution . 19
Conditional Execution . 19
Loops . 20
Loops in Loops . 21
Loop Commands . 22

Strings . 23
String Indexing . 24
String Slicing . 24
String Methods . 25

Lists . 27
Create a List . 27
Access Elements in a List . 28
Use a List of Lists . 28

x Contents in Detail

Add or Multiply Lists . 29
List Methods . 30
Use Built-in Functions with Lists . 33
list() . 33

Dictionaries . 33
Access Values in a Dictionary . 34
Use Dictionary Methods . 34
How to Use Dictionaries . 35
Switch Keys and Values . 36
Combine Two Dictionaries . 37

Tuples . 37
Functions . 38

Use Built-in Python Functions . 38
Define Your Own Functions . 40

Modules . 42
Import Modules . 42
Create Your Own Modules . 44
Use Third-Party Modules . 45

Create a Virtual Environment . 46
Activate the Virtual Environment in Windows . 46
Set Up Spyder in the Virtual Environment in Windows 47

Summary . 47
End-of-Chapter Exercises . 48

PART II: LEARNING TO TALK 53

3
SPEECH RECOGNITION 55
Install the SpeechRecognition Module . 56

In Windows . 56
In Mac or Linux . 57

Test and Fine-Tune SpeechRecognition . 57
Import SpeechRecognition . 57
Test SpeechRecognition . 58
Fine-Tune the Speech Recognition Feature . 59

Perform a Voice-Controlled Web Search . 61
Use the webbrowser Module . 61
Add Voice Control . 62
Perform a Google Search . 64

Open Files . 65
Use the os and pathlib Modules to Access and Open Files 65
Open Files via Voice Control . 66

Create and Import a Local Module . 69
Create the Local Module mysr . 69
Import mysr . 70

Summary . 71
End-of-Chapter Exercises . 71

Contents in Detail xi

4
MAKE PYTHON TALK 73
Install the Text-to-Speech Module . 74

Setup . 74
Test Your Text-to-Speech Module . 75

Repeat After Me . 79
Customize the Speech . 81

Retrieve Default Settings in the pyttsx3 Module in Windows 81
Adjust Speech Properties in the pyttsx3 Module in Windows 82
Customize the gTTS Module in Mac or Linux . 82

Build the Local mysay Module . 83
Create mysay . 83
Import mysay . 84

Build a Voice-Controlled Calculator . 85
Read a File Aloud . 86
Summary . 88
End-of-Chapter Exercises . 88

5
SPEAKING APPLICATIONS 89
Create Your Self-Made Local Python Package . 90

What’s a Python Package? . 90
Create Your Own Python Package . 91
Test Your Package . 92
More on Python Packages . 93

Interactive Guess the Number Game . 94
Speaking Newscast . 98

Scrape the News Summary . 98
Add the Text-to-Speech Features . 101

Voice-Controlled Wikipedia . 102
Access Wikipedia . 103
Add Speech Recognition and Text to Speech . 103

Voice-Activated Music Player . 104
Traverse Files in a Folder . 105
Python, Play Selena Gomez . 105
Python, Play a Country Song . 107

Summary . 109
End-of-Chapter Exercises . 109

6
WEB SCRAPING PODCASTS, RADIOS, AND VIDEOS 111
A Primer on Web Scraping . 112

What Is HTML? . 112
Extract Information with Beautiful Soup . 114

Scrape Live Web Pages . 116
Voice-Activated Podcasts . 119

Extract and Play Podcasts . 119
Voice-Activate Podcasts . 122

xii Contents in Detail

Voice-Activated Radio Player . 125
Install the selenium Module . 125
Control Web Pages . 125
Voice-Activate Live Radio . 128

Voice-Activated Videos . 129
Summary . 131
End-of-Chapter Exercises . 131

7
BUILDING A VIRTUAL PERSONAL ASSISTANT 133
An Overview of Your VPA . 134

Download VPA Files . 134
Install the arrow Module . 136

Manage the Standby Mode . 136
Create the Local Module mywakeup . 137
Set Some Responses . 138

Ask Your VPA to Set a Timer . 138
Tell the Time with Python . 138
Build a Timer . 140
Create the mytimer Module . 143
Set the Timer . 143

Ask Your VPA to Set an Alarm Clock . 144
Build an Alarm Clock . 144
Create the Alarm Clock Module . 146
Set an Alarm . 146

Ask Your VPA to Tell a Joke . 147
Create Your Joke List . 147
Create a Joke Module . 148
Tell a Joke . 149

Send Hands-Free Email . 150
Send Email with Written Commands . 150
Create the Email Module . 151
Add the Email Functionality . 152

Summary . 154
End-of-Chapter Exercises . 154

8
KNOW-IT-ALL VPA 155
Get Answers from WolframAlpha . 156

Apply for an API Key . 156
Retrieve Information . 158
Explore Different Areas of Knowledge . 159

Add a Know-It-All Functionality to Your VPA . 162
What WolframAlpha Cannot Answer . 162
Create the myknowall Module . 164
A VPA That Can Answer (Almost) Any Question for You 165

Summary . 166

Contents in Detail xiii

PART III: INTERACTIVE GAMES 167

9
GRAPHICS AND ANIMATION WITH THE TURTLE MODULE 169
Basic Commands . 170

Create a turtle Screen . 170
Create Movements . 172

Basic Shapes . 177
Use the dot() Function . 177
Draw Your Own Shapes . 178
Draw Grid Lines . 181

Animation . 182
How Animation Works . 183
Use Multiple Turtles . 185

Summary . 187
End-of-Chapter Exercises . 187

10
TIC-TAC-TOE 189
Game Rules . 190
Draw the Game Board . 190
Create the Game Pieces . 192

How Mouse Clicks Work in turtle . 192
Convert Mouse Clicks to Cell Numbers . 193
Place Game Pieces . 195

Determine Valid Moves, Wins, and Ties . 198
Voice-Controlled Version . 202
Summary . 205
End-of-Chapter Exercises . 206

11
CONNECT FOUR 207
Game Rules . 208
Draw the Game Board . 208
The Mouse-Click Version . 210

Drop a Disc . 210
Animate the Falling Discs . 212

Determine Valid Moves, Wins, and Ties . 214
The Voice-Controlled Version . 220
Summary . 224
End-of-Chapter Exercises . 225

12
GUESS-THE-WORD GAME 227
Game Rules . 228
Draw the Game Board . 228
The Text Version . 230

Load the Coins . 230
Guess the Letters . 231
Determine Valid Guesses, Wins, and Losses . 234

xiv Contents in Detail

The Voice-Controlled Version . 237
Summary . 240
End-of-Chapter Exercises . 240

13
SMART GAMES: ADDING INTELLIGENCE 241
The Think-Three-Steps-Ahead Strategy . 242

Think One Step Ahead . 242
Think Two Steps Ahead . 246
Implement the Think-Two-Steps-Ahead Strategy . 248
Think Three Steps Ahead . 249

The Machine-Learning Strategy . 252
Create a Dataset of Simulated Games . 252
Apply the Data . 255

Test the Effectiveness of the Two Strategies . 257
The Think-Three-Steps-Ahead Strategy . 257
The Machine-Learning Strategy . 259
Why Doesn’t the Machine-Learning Strategy Work Well in Connect Four? . . . 260

Voice-Controlled Intelligent Connect Four Games . 264
A Voice-Controlled Game That Thinks Ahead . 264
A Voice-Controlled Game Using Machine Learning 266

Summary . 267
End-of-Chapter Exercises . 267

PART IV: GOING FURTHER 269

14
FINANCIAL APPLICATIONS 271
Python, What’s the Facebook Stock Price? . 272

Obtain the Latest Stock Price . 272
Find Ticker Symbols . 274
Retrieve Stock Prices via Voice . 277

Voice-Controlled Data Visualization . 279
Create Stock Price Plots . 279
Create Candlestick Charts . 282
Add Voice Control . 285

Voice-Controlled Stock Report . 289
Analyze Recent Stock Performance and Risk . 289
Add Voice Control . 292

Summary . 293
End-of-Chapter Exercises . 294

15
STOCK MARKET WATCH 295
Bitcoin Watch . 296

How to Read JSON Data . 296

Contents in Detail xv

A Quick Introduction to the tkinter Package . 298
A Graphical Bitcoin Watch . 300
A Talking Bitcoin Watch . 301

A Talking Stock Market Watch . 303
Apply the Method to Other Financial Markets . 306
Summary . 307
End-of-Chapter Exercises . 307

16
USE WORLD LANGUAGES 309
Text to Speech in Other Languages . 310

Install Modules . 310
Convert Text to Speech in Spanish . 311
Support Text to Speech in Other Languages . 311
Convert Text to Speech in World Languages . 312

Speech Recognition in Major World Languages . 314
A Talking Wikipedia . 315
Create Your Own Voice Translator . 317

A Text-Based Translator . 317
A Voice-Based Translator . 318

Summary . 320

17
ULTIMATE VIRTUAL PERSONAL ASSISTANT 321
An Overview of the Final VPA . 322
The Chatting Functionality . 326
The Music Functionality . 328

Create a Music Module . 328
Activate the Music Functionality . 329

The News Brief Module . 331
Create a News Module . 331
Activate the News Functionality . 332

The Live Radio Module . 333
Create a Radio Module . 333
Activate the Radio Functionality . 333

The Tic-Tac-Toe Module . 334
Create a Tic-Tac-Toe Module . 334
Activate Tic-Tac-Toe . 337

The Connect Four Module . 338
Create a Connect Four Module . 339
Activate Connect Four . 339

The Stock Price Module . 340
Create a Stock Market–Tracking Module . 340
Activate the Stock Market–Tracking Functionalities . 341

The Voice Translator Module . 342
Create a Translator Module . 342
Activate the Voice Translator . 344

Summary . 345

xvi Contents in Detail

APPENDIX A: INSTALL MODULES TO PLAY AUDIO FILES 347
Install the playsound Module . 348

Windows . 348
Mac 348
Linux . 348

Install the pydub Module . 348
Install the pygame Module . 349

Windows . 349
Mac 349
Linux . 349

Install the vlc Module . 349
Sample Scripts to Test the Four Modules . 350

The playsound Module . 350
The pydub Module . 350
The pygame Module . 350
The vlc Module . 351

APPENDIX B: SUGGESTED ANSWERS
TO END-OF-CHAPTER EXERCISES 353

INDEX 369

A C K N O W L E D G M E N T S

Many people have helped to make this book a reality. A portion of this book
was developed while I was preparing Python workshops for MS Finance
students at the University of Kentucky in the past few years. Several Finance
master and Ph.D. students helped tremendously in the process: Joe Farizo,
James Keyser, Blake Best, and especially my teaching assistants at the time
Mike Farrell and Patrick Mullins. I’d like to thank all MS Finance students
for keeping me motivated to learn new Python skills in order to show them
how useful and interesting coding is.

I’d also like to thank Bill Pollock and Barbara Yien at No Starch Press
for guiding me through the editorial process. Special thanks to my devel-
opmental editor Liz Chadwick, whose pursuit for perfection has greatly
improved the book. She helped me find the delicate balance between over-
explaining and not enough detail.

Many thanks to the technical reviewer of the book Noah Spahn. He
doesn’t simply check if the code works correctly, he also makes sure the
scripts are as efficient as they can be. A case in point is that he pushed
me to find a way to make the self-made modules in different chapters

xviii Acknowledgments

consistent. This prompted me to use the self-made Python package in the
book. He went way beyond just checking the scripts, and frequently edited
the writing to help explain technical details in the book.

Last but not least, I’d like to thank my wife Ivey Zhang and my son
Andrew Liu for being so supportive in this journey. In the past couple of
years, I probably have spent more time with the book than with them over
the weekends and holidays. I am indebted to them the most.

I N T R O D U C T I O N

Banks are essentially technology firms.
—Hugo Banziger, former chief risk officer at Deutsche Bank

Python is currently the world’s most popular
coding language, having overtaken more

long established languages like Java and C.
Once you start to code in Python, it’s easy to see

why. The two main advantages of Python are its sim-
plicity and openness. Python code is relatively close to
plain English, so with only a little experience, you can
often guess what a script is trying to accomplish.

Python is open source, meaning not only that the software is free to use
for everyone but also that other users can create and alter libraries. In fact,
Python has a vast ecosystem from which you can get resources and help
from members in the community. Python programmers can share their
code with one another, so instead of building everything from scratch, you
can import modules designed by others, as well as share your modules with
others in the Python community.

When people heard that I was writing a Python book on speech recog-
nition and text to speech, their reaction was generally the same: “I thought

xx Introduction

you were a finance professor.” My typical answer is the Hugo Banziger quote
that opens this chapter, made shortly after the 2008 financial crisis. Nowadays,
you can replace banks with corporations in any other industry—car manufac-
turers, retailers, anything really—and the quote still rings true. Technology is
in every aspect of our lives these days. The future is here and now.

Python has been the world’s most popular coding language since 2018.
Long before that, Python was the leading programming language in the
finance world, with applications in financial services, portfolio manage-
ment, algorithmic trading, cryptocurrency, and so on.

N O T E The article “Python Is Becoming the World’s Most Popular Coding Language” in The
Economist (https://www.economist.com/graphic-detail/2018/07/26/python-
is-becoming-the-worlds-most-popular-coding-language/) has details on the
increasing popularity of Python.

When talking to potential employers of my Master of Science in
Finance (MSF) students, I was told that they have people who know finance,
but not coding—and people who know coding, but nothing about finance.
They wanted to hire people who understood both. As a result, we started to
incorporate Python into the MSF curriculum.

The reactions from the finance students were mixed. Many students
found Python user-friendly and versatile, while others wondered why
they needed to bother learning Python when they could do everything in
Microsoft Excel. So I started to show them cool skills in Python that are
impossible in Excel, such as obtaining real-time stock prices via voice com-
mands, creating a talking graphical US stock market watch, and so on. I
wanted to show that Python can accomplish more than Excel, that the bar-
rier to entry is not very high, and most important, that it’s fun!

In this book, I focus on speech recognition and text-to-speech function-
ality in fun and genuinely useful applications, such as a voice translator, a
voice-controlled online radio, a virtual personal assistant, voice-controlled
graphical games, and so on. My aim is to teach Python skills that are appli-
cable and adaptable in real life, while keeping the skeptical students of
Python interested in what they’re doing.

 About This Book
This book both is and isn’t an introductory book on Python. While it’s not
intended as a full tutorial in Python basics, it is written simply enough that
a total beginner can follow along. You’ll learn how to install Python on your
computer and write your very first script. You’ll also learn the basic rules
of Python, how functions and modules work, and various data types every
Python user needs to know. With this, you’ll be able to accomplish most
simple tasks in Python.

At the same time, this book isn’t an introductory book in Python. I’ll
provide a Python refresher that will prepare you for later chapters, but it isn’t
a comprehensive introduction. Several wonderful books cover all the basics
of Python. One example is Python Crash Course by Eric Matthes (No Starch
Press, 2019).

https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language/
https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language/

Introduction xxi

Beyond the refresher, the purpose of this book is to improve your skills
and build real working applications you can use in your daily life. This book
also eases you into more advanced topics, such as making your own Python
modules and packages. In Chapter 3, you’ll learn how to use a function in a
self-made module to contain all speech recognition functionality and related
code so that you don’t have to repeat the code every time you convert speech
to text. In Chapter 5, you’ll create a package from which you can import the
function in the module to convert speech to text in all chapters that need
this feature (which is pretty much all the remaining chapters in the book).
Along the way, you’ll learn how Python modules and packages work.

The end-of-chapter exercises are a great tool for practicing concepts
and checking that you really understand them. You’ll find the answers at
the end of the book.

The code in this book is all cross-platform, so it should work in
Windows, Mac, or Linux. I’ll address the differences in the three operating
systems whenever there are any.

 What’s in This Book?
This book is divided into four parts. Part I discusses how to install Python, as
well as the basic Python rules and skills you’ll need in later chapters. Part II
introduces you to speech recognition and text-to-speech functionality, includ-
ing how to install and fine-tune the required modules. You’ll also use the
speech recognition and text-to-speech functionalities to create a virtual per-
sonal assistant.

Part III covers interactive games. You’ll learn to create graphical games
and add text-to-speech and speech recognition features to make them talk
and take voice commands. In Part IV, we build some applications to follow
the financial markets, and we’ll see how to make Python talk and listen in
major world languages. The last chapter of the book builds our ultimate
virtual assistant by adding the interactive games and the voice translator to
it. Here’s an overview of the book:

Part I: Getting Started

Chapter 1: Setting Up Python, Anaconda, and Spyder

You’ll install the Python software required for the book and start run-
ning Python scripts, even if you know nothing about coding. We’ll also
talk about basic operations in Python.

Chapter 2: Python Refresher

You’ll learn how to use the built-in Python functions and how to import
modules in the Python Standard Library. You’ll then learn how functions
and modules work and how to create your own. I’ll discuss ways of install-
ing these modules on your computer. Finally, you’ll learn about virtual
environments, their uses, and how to create and activate them.

Python uses strings, lists, dictionaries, and tuples as collections of
elements to accomplish certain tasks. In this chapter, you’ll learn about
these four types of collections and see examples of their uses.

xxii Introduction

Part II: Learning to Talk

Chapter 3: Speech Recognition

You’ll install modules related to speech recognition in Python, then cre-
ate a script to have Python recognize your speech and print it out. You’ll
use voice control to complete several tasks, such as taking voice dicta-
tion, opening web browsers, opening files, and playing music on your
computer. To save space in your scripts, you’ll learn how to put all code
related to speech recognition into a custom local module so that the
final script is concise, short, and clean.

Chapter 4: Make Python Talk

Here, you’ll learn how to make Python talk back to you in a human voice.
You’ll install the text-to-speech module and teach Python to speak aloud
whatever you enter into Spyder. We’ll also add the speech recognition
feature and get Python to repeat whatever you say. We’ll store all code
related to text-to-speech functionality in another custom module.

Chapter 5: Speaking Applications

You’ll put the speech recognition and text-to-speech functionality from
Chapters 3 and 4 to use in a couple of applications. First, you’ll parse
text to extract news summaries from National Public Radio (NPR) and
have Python read them out to you. You’ll also build a script to extract
information from Wikipedia based on your voice inquiries and speak
the answers. Finally, you’ll learn how to traverse files in a folder with
your voice, with the aim of building your very own Alexa. You’ll be able
to say, “Python, play Selena Gomez,” and a song by Selena Gomez that’s
saved on your computer will play.

Chapter 6: Web Scraping Podcasts, Radios, and Videos

You’ll learn the basics of web scraping. I’ll cover how HyperText Markup
Language (HTML) works to construct web pages. You’ll parse HTML
files and extract information. Then you’ll use these skills to voice-acti-
vate podcasts, live radio stations, and videos on various websites.

Chapter 7: Building a Virtual Personal Assistant

You’ll create your own virtual personal assistant (VPA), similar to
Amazon’s Alexa. Whenever you need assistance, you can say “Hello,
Python” to wake up your VPA; you’ll also use voice commands to put
it in standby mode. The VPA can act as a timer and an alarm clock,
tell jokes, and send email 100 percent hands-free.

Chapter 8: Know-It-All VPA

Here you’ll add know-it-all functionality to your VPA. Specifically,
you’ll tap into the vast knowledge base in the computational engine
WolframAlpha and use Wikipedia as a backup if WolframAlpha can’t
answer your question. Your know-it-all VPA is capable of answering
almost any question for you.

Introduction xxiii

Part III: Interactive Games

Chapter 9: Graphics and Animation with the Turtle Module

Our goal in Part III is to build voice-controlled graphical games such
as tic-tac-toe, Connect Four, and guess-the-word. You’ll do all these
in the turtle module. In this chapter, you’ll learn the basic turtle com-
mands that will let you set up a turtle screen, draw shapes, and create
animations.

Chapter 10: Tic-Tac-Toe

You’ll build a voice-controlled tic-tac-toe game to put all the new skills
you’ve learned so far into practice. You’ll draw a game board, check for
valid moves, and detect if a player has won. You’ll then add the speech
recognition and text-to-speech features and set up the game so you play
against your own computer.

Chapter 11: Connect Four

You’ll next build a voice-controlled Connect Four game. You’ll draw the
board, animate the effect of a disc falling from the top of a column to
the lowest available cell, and use Python logic to enforce a new set of
game rules. Then you’ll add speech functionality to the game.

Chapter 12: Guess-the-Word Game

You’ll build a voice-controlled, graphical guess-the-word game that is
an adaptation of the popular hangman game. This is an interesting
challenge because when playing guess-the-word, players often exchange
information verbally at a fast pace, so you’ll need to fine-tune the
script’s listening abilities.

Chapter 13: Smart Games: Adding Intelligence

In the one-player version of tic-tac-toe or Connect Four, the computer
always randomly selects a move. In this chapter, we’ll build smart games
by using two techniques that will get you to think about how to break
down and solve problems in programming. The first is the think-three-
steps-ahead approach, which has the computer following the path that
most likely leads to a victory after three moves. The second method uses
machine learning. You’ll simulate a million games in which both play-
ers select random moves. With this data, the computer will learn at each
move and select the one most likely to lead to a winning outcome.

Part IV: Going Further

Chapter 14: Financial Applications

These programming skills and speech recognition and text-to-speech
techniques can be applied to any aspect of your life. Here, I’ll show
you how to adapt your skills to monitoring the financial markets. You’ll
then be able to generalize these techniques and apply them to your

xxiv Introduction

own area of interest, whatever that may be. You’ll build three projects:
an app that tells you the up-to-date stock price of any publicly traded
company; a script that builds visualizations of stock prices; and an app
that uses recent daily stock prices to calculate returns, run regressions,
and perform detailed analyses.

Chapter 15: Stock Market Watch

You’ll create a graphical, speaking app that watches the US stock
market live and updates you aloud whenever a chosen stock exceeds
certain preset thresholds. To build the necessary skills, you’ll first
create a graphical Bitcoin watch by using tkinter to display live price
information.

Chapter 16: Use World Languages

So far, we’ve taught Python how to speak and listen in English. But
Python can understand many other world languages. In this chapter,
you’ll first teach Python to talk in several other languages with the
modules you’ve been using. I’ll then introduce a useful module called
translate, which can translate one language to another. You’ll use it to
build a translator that changes whatever you speak into another lan-
guage of your choice.

Chapter 17: Ultimate Virtual Personal Assistant

You’ll load up your virtual personal assistant with the interesting proj-
ects in this book, like voice-controlled games, translators, music players,
and so on. You’ll first add a chatting functionality to the VPA so you can
carry out a daily conversation with the script. The whole idea of a VPA
is its convenience, so we’ll adjust these projects so that all added func-
tionalities are 100 percent hands-free.

Appendix A: Install Modules to Play Audio Files

Since the focus of the book is on making Python talk and listen, playing
audio files is important. This appendix presents a few modules you can
use to play audio files, along with their advantages and disadvantages.

Appendix B: Answers to End-of-Chapter Exercises

This appendix provides suggested answers to all the exercises at the
end of the chapters. You can use these answers to check your own and
for help if you get stuck on any of the questions.

PART I
G E T T I N G S T A R T E D

1
S E T T I N G U P P Y T H O N ,

A N A C O N D A , A N D S P Y D E R

Even if you’ve never coded before, this
chapter will guide you through installing

the Python software you need to start run-
ning Python scripts for this book. We’ll be using

Anaconda and Spyder, so we’ll discuss the advantages
of choosing this Python distribution and development
environment, respectively. I’ll guide you through the
installation process based on your operating system,
whether that’s Windows, Mac, or Linux. Then you’ll
learn how to start coding in the Spyder editor. We’ll dis-
cuss basic Python rules and operations at the end.

Before you begin, set up the folder /mpt/ch01/ for this chapter on your
computer. All scripts in this chapter (and later chapters) are available at the
book’s resources page, https://www.nostarch.com/make-python-talk/.

https://ww.nostarch.com/make-python-talk/

4 Chapter 1

NE W SKIL L S

• Installing Anaconda on your computer based on your operating system

• Writing Python scripts in the Spyder editor

• Executing Python code line by line or block by block or running the whole
script

• Understanding Python syntax

• Performing basic mathematical operations

 Introducing Anaconda and Spyder
There are many ways to install Python and run scripts. In this book, we’ll
use Anaconda and Spyder.

Anaconda is an open source Python distribution, package, and environ-
ment manager. It is user friendly and provides for the easy installation of
many useful Python modules that otherwise can be quite a pain to compile
and install yourself. We’ll start by downloading the Anaconda distribution
of Python that comes bundled with Spyder.

Spyder is a full-featured integrated development environment (IDE) for
writing scripts. It comes with many useful features such as automatic code
completion, automatic debugging, code suggestions, and warnings.

 Installing Anaconda and Spyder
Python is a cross-platform programming language, meaning you can run
Python scripts whether you use Windows, Mac, or Linux. However, the
installation of software and modules can be slightly different depending
on your operating system. I’ll show you how to install various modules
in your operating system. Once these are properly installed, Python code
works the same in different operating systems.

Install Anaconda and Spyder in Windows
To install Anaconda in Windows, go to https://www.anaconda.com/products/
individual/ and download the latest version of Python 3 for Windows.

I recommend using the graphical installer instead of the command
line installer, especially for beginners, to avoid mistakes. Make sure you
download the appropriate 32- or 64-bit package for your machine. Run the
installer and follow the instructions all the way through.

Find and open the Anaconda navigator, and you should see a screen like
Figure 1-1 (if you need to, search for Anaconda navigator in the search bar).

https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/

Setting Up Python, Anaconda, and Spyder 5

Figure 1-1: The Anaconda navigator

Click the Launch button under the Spyder icon. If Spyder is not already
installed, click Install to install the Spyder development environment. After
it finishes, click Launch.

Install Anaconda and Spyder in macOS
To install Python via Anaconda for macOS, go to https://www.anaconda.com/
products/individual/, scroll down, and download the latest version of Python 3
for Mac. Choose the graphical installer and follow the instructions through.

Open the Anaconda navigator by searching for Anaconda navigator in
Spotlight search. The screen for the Anaconda navigator in macOS should
look similar to Figure 1-1, perhaps with slight differences.

To launch Spyder, click Launch under the Spyder icon (if you see an
Install button instead, click it to install Spyder first).

Install Anaconda and Spyder in Linux
The installation of Anaconda and Spyder in Linux involves more steps
than for other operating systems. First, go to https://www.anaconda.com/
products/individual/, scroll down, and find the latest Linux version. Choose the
appropriate x86 or Power8 and Power9 package. Click and download the latest
installer bash script. For example, the installer bash script during my installa-
tion was https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh.
This link will change over time, but we’ll use this version as our example.

By default, the installer bash script is downloaded and saved to the
Downloads folder on your computer. You should then install Anaconda as
follows using the path for your bash script if it is different.

bash ~/Downloads/Anaconda3-2020.11-Linux-x86_64.sh

https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://repo.anaconda.com/archive/Anaconda3-2020.11-￼Linux-x86_64.sh

6 Chapter 1

After pressing ENTER, you’ll be prompted to review and approve the
license agreement. The last question in the installation process is this:

installation finished.
Do you wish the installer to prepend the Anaconda3 install location to PATH
in your /home/mark/.bashrc ? [yes|no]
[no] >>>

You should type yes and press ENTER in order to use the conda com-
mand to open Anaconda in a terminal.

W A R N I N G Since the default choice is no in this step, it’s easy to make a mistake by pressing
ENTER without typing in yes. If that occurs, enter the following command in the
terminal:

gedit /home/your user name here/.bashrc

You’ll need to enter your actual username in the path. My username is mark, so my
full path is /home/mark/.bashrc. Once you execute this command, the .bashrc file
should open. Enter this as a new line at the end of the file:

export PATH=/home/your user name here/anaconda3/bin:$PATH

Then save and close the file.

Now you need to activate the installation by executing this command:

source ~/.bashrc

To open Anaconda navigator, enter the following command in a
terminal:

anaconda-navigator

You should see the Anaconda navigator on your machine, similar to
Figure 1-1. To launch Spyder, click the Launch button under the Spyder
icon (if you see an Install button instead, click it to install Spyder first).

 Using Spyder
To get you up and running, we’ll build a really simple script in Spyder. Then
I’ll run through a few basic concepts that’ll be useful to know before you
start coding for real.

Write Python in Spyder
As mentioned earlier, Spyder is a full-featured IDE. Let’s start with a simple
script. After you launch the Spyder development environment, you should
see a layout like Figure 1-2.

Setting Up Python, Anaconda, and Spyder 7

Figure 1-2: Spyder development environment

Spyder comes with several predefined layouts, and you can customize
layouts according to your preferences. The default layout has three panels.
Let’s examine that default.

At the left is the Spyder editor, in which you can write Python code. At the
top right is the variable explorer, which shows the details of the data generated
by your script. As scripts become quite complicated, the variable explorer
becomes a valuable asset in double-checking the values stored in your
variables.

At the bottom right is the interactive Python (IPython) console, which shows
the output of the script or executes snippets of Python code. The IPython
console is also where you enter input for scripts that require user informa-
tion. It also displays error messages if you make a mistake in your script.

Now let’s start coding. Go to the Spyder editor window (again, the
default location is on the left) and enter this:

print("This is my very first Python script!")

Click FileSave As and save the file as my_first_script.py in your chapter
folder.

There are three ways to run scripts, and all lead to the same outcome:

1. Go to the Run menu and select Run.

2. Press F5 on your keyboard.

3. Press the green triangle icon ► in the icons bar.

Run the script and you should see something like Figure 1-3. The out-
put, shown in the IPython console, is a simple printed message: This is my very
first Python script! Congratulations—you have written and successfully run
your first Python script!

8 Chapter 1

Figure 1-3: Running a script in the Spyder development environment

Inspect Code in Spyder
Besides running an entire script, Spyder has the ability to run code line
by line or block by block. Running a piece of a script at a time is useful for
carefully following the execution of a script, to verify that it does exactly
what you intended it to do. Go back to the my_first_script.py example and
add another line:

print("This is my second Python message!")

Place your cursor over this second line and press F9, and you should see
the output shown in Figure 1-4.

Figure 1-4: Running just one line of code in the Spyder editor

Setting Up Python, Anaconda, and Spyder 9

As you can see, only the highlighted line is executed. Here’s the output:

This is my second Python message!

Now press F5, and you’ll see that every line in the script is executed:

This is my very first Python script!
This is my second Python message!

To run a particular block of code, highlight those lines of code and
press F9.

 Understanding Coding in Python
Before we get into the coding concepts of Python, you need to understand
a few general things. This section introduces Python syntax and basic math-
ematical operations.

Python Syntax
First, Python is case-sensitive. You should take great care when it comes to
uppercase and lowercase letters. The variables X and Y are different from
the variables x and y. The strings "Hello" and "hello" are also different from
each other.

Second, indentations are significant in Python. Nonprinting characters
like tabs must be consistently applied throughout a script. If you have expe-
rience with another programming language, like C or Java, you may notice
the lack of brackets and semicolons in Python; this is by design. Blocks
of code are defined by indentation. An unintended space in the code will
likely betray your intentions, as we’ll see in Chapter 2 when we discuss
indentations in conditional executions, loops, and functions.

Third, Python uses single quotation marks and double quotation marks
(mostly) interchangeably. For example, placing a sequence of characters
inside single quotes has the same effect as if we put them in double quotes
(unless one of the characters is an escape character or a single quote).

Fourth, Python lets you make notes, known as comments. One popular
way to write a comment uses the hash mark (#). Everything in the same line
after # will not be executed. It’s good practice to make notes in your scripts
so others can more easily understand what the code is doing—and to remind
yourself of the decisions you’ve made when you revisit the code after a few
weeks or a few months. For example, in the very first line in my_first_script.py,
we have this:

-*- coding: utf-8 -*-

Since this line starts with #, Python ignores it, understanding that it’s a
comment and not code to execute.

10 Chapter 1

When you have a comment that can’t fit on one line, you can place the
comment in triple quotation marks ("""), and everything between the first
set of quotes and the last set will not be executed by the Python script. For
example, in lines 2 to 6 in my_first_script.py, we have this:

"""
Created on Fri Apr 16 14:49:19 2021

@author: hlliu2
"""

All those lines are ignored by Python.

Basic Operations in Python
Python is capable of basic math operations. For example, to calculate 7
multiplied by 123, you enter the following in the Spyder editor:

print(7*123)

Place your cursor in this line, press F9, and you will get an output of 861.
Table 1-1 provides the other basic math operations in Python.

Table 1-1: Basic Math Operators

Operators Action

+ Addition: print(5+6) will give you a result of 11.

- Subtraction: print(9-4) will give you a result of 5.

/ Division: print(9/3) will give you a result of 3.

** Exponent: print(5**3) will give you a result of 125.

% Remainder: print(13%5) will give you a result of 3 because 13 = 5 × 2 + 3.

// Integer quotient: print(13//5) will give you a result of 2 because 13 =
5 × 2 + 3.

These operations have precedence, meaning they will execute in a partic-
ular order. That order of operations is as follows: operations within paren-
theses have highest priority, followed by exponents, then multiplication and
division, which have the same priority and are executed from left to right.
Addition and subtraction have the least priority and are treated equally, so
whichever comes first is executed first.

For more complicated mathematical operations, such as cosine in trigo-
nometry or the natural logarithm, we need to import modules, which I’ll
cover in Chapter 2.

Setting Up Python, Anaconda, and Spyder 11

 Summary
In this chapter, you learned how to install Python and Spyder via Anaconda.
You also learned to run Python scripts by using Spyder.

In Chapter 2, we’ll discuss the Python skills that you need for the rest
of the book. You’ll learn the four main value types and how to convert one
type to another. We’ll look at conditional execution and loops as well as
how functions and modules work in Python, allowing you to accomplish
more-complicated tasks.

 End-of-Chapter Exercises

1. Add a line of code to my_first_script.py so that it prints out a third mes-
sage that says Here is a third message!

2. What is the output from each of the following Python statements?
First write down the answers and then run the commands in Spyder
to verify.

print(2)
print(3**2)
print(7//3)
print(7/3)
print(7%3)
print(2+2)
print(10*2)

3. What is the command line in the Spyder editor if you want to find the
result of 55 multiplied by 234?

2
P Y T H O N R E F R E S H E R

This chapter is a refresher on basic Python.
The purpose of this chapter is not to com-

prehensively review all the basic commands in
Python. Instead, I’ll provide you with the Python

skills that are most important to the rest of the book.
Specifically, you’ll learn the four Python variable types (strings, integers,

floats, and Booleans) and how to convert one type to another. Functions are
useful tools in programming languages, and you’ll learn to use built-in func-
tions in Python and to import modules in the Python Standard Library.

You’ll also learn how functions work and how to define your own functions.
Many modules we use in this book are not in the Python Standard Library, and
you’ll learn different ways of installing these modules on your computer.

We’ll discuss how modules work and how to create your own self-made
modules. You’ll then learn about a virtual environment, why it’s useful, and
how to create and activate one.

Python uses strings, lists, dictionaries, and tuples as collections of ele-
ments to accomplish complicated tasks. In this chapter, you’ll learn these
four types of collections, one by one. You’ll also see examples of their uses.

14 Chapter 2

Before you begin, set up the folder /mpt/ch02/ for this chapter. As in
Chapter 1, all scripts in this chapter are available at the book’s resources
page, https://www.nostarch.com/make-python-talk/.

NE W SKIL L S

• Understanding different types of variables and converting one type to another

• Using Python built-in functions and importing modules to a script

• Learning various ways of installing third-party modules

• Creating your own functions and modules

• Creating and activating a virtual environment

• Using strings, lists, dictionaries, and tuples to accomplish complicated tasks

 Variables and Values
A variable is a reserved memory location to store values in Python (and in
other programming languages). We can assign values to variables and use
the variable name to recall the associated value. Python has four types of
values: strings, floats, integers, and Booleans.

Strings
A string is a sequence of characters inside quotation marks, often used to
represent text. Here are some examples of strings:

Name1 = 'University of Kentucky '
Name2 = "Gatton College 2021"

You can find out the type that a variable contains by using the type()
function. Enter the following in the Spyder editor:

print(type(Name1))
print(type(Name2))

After execution, you’ll see the following output:

<class 'str'>
<class 'str'>

This means both variables have string values. You can add or multiply
strings, but not in the traditional mathematical sense; instead, you can join
strings or repeat them. For example, say you run the following two lines of
code in the Spyder editor:

print(Name1+Name2)
print(Name1*3)

https://www.nostarch.com/make-python-talk/

Python Refresher 15

You will see the following output:

University of Kentucky Gatton College 2021
University of Kentucky University of Kentucky University of Kentucky

The plus sign joins two strings together, while multiplying a string by 3
means to repeat the characters in the string three times. Note that I’ve delib-
erately left an empty space at the end of the string University of Kentucky, so
that when they join together, there is a space between the strings.

Floats
Floating-point numbers, also known as just floats, are a number type that’s
equivalent to decimal numbers in mathematics. Here are two examples of
floats:

x = -17.8912
y = 0.987

You can use the round() function to restrict a float to a certain number
of digits after the decimal point. Floats can be positive, negative, or zero.
Run the following code:

print(type(x))
print(type(y))
print(round(x,3))
print(round(y,1))

You will have the following output:

<class 'float'>
<class 'float'>
-17.891
1.0

Floats are used to perform calculations.

Integers
Integers are another number type; they can’t have decimal places and so
must be whole numbers. Integers are used mainly for indexing purposes in
Python. Integers can be positive, negative, or zero. Here are some examples
of integers:

a = 7
b = -23
c = 0

It is important to know that floats always have decimals, while integers
do not. You never need to tell Python what type you want to use; instead, it
can tell by the information you give it. Python knows you’re using an inte-
ger if you enter a number without any quote marks and without decimal

16 Chapter 2

places. Even if you round a float number to zero digits after a decimal, you
would still get a decimal point and a 0 trailing the number. Run the follow-
ing code:

print(type(a))
print(type(b))
print(type(c))
print(round(7.346,1))
print(round(7.346,0))

You will have the following output:

<class 'int'>
<class 'int'>
<class 'int'>
7.3
7.0

The output shows that all three variables, a, b, and c, are integers. You
will not get an output of 7 from print(round(7.346,0)), because using the deci-
mal is Python’s way of telling an integer apart from a float.

Bools
Booleans, or bools, are binary variables that can take only the value of True or
False. Note that the first letter in True or False must always be uppercase. We
use bools to find out truths about our code and make logical statements. As
an example, run these two lines of code that compare two numbers:

print(4 > 5)
print(10 >= 6)

You will get the following output:

False
True

The results show that the logic statement 4 > 5 is False, while the logic
statement 10 >= 6 is True. The values True or False (without quotes) are
not strings but are special values reserved by Python. Try the following
commands:

print('4 > 5')
print(type(4 > 5))
print(type('4 > 5'))

Here’s the output:

4 > 5
<class 'bool'>
<class 'str'>

Python Refresher 17

As you can see, once you put 4 > 5 inside quotation marks, it becomes a
string variable instead of a bool.

Bools can also be represented with 1 (or, in reality, anything that’s non-
zero) for True and 0 for False. Run this code:

print(int(True))
print(int(False))
print(float(True))
print(str(False))

It outputs the following:

1
0
1.0
'False'

The bool() function converts any nonzero value to True and 0 to False.
Run the following:

print(bool(1))
print(bool(-2))
print(bool(0))
print(bool('hello'))

And you will get this:

True
True
False
True

Convert Variable Types
You can convert the type of a variable by using the functions str(), int(),
bool(), and float(), but only if the type you’re trying to convert is compati-
ble with the resulting type. For example, you can convert the string variable
"17" to an integer or a float by using int("17") or float("17"), because 17 is a
number that can be recognized as an integer or float. However, you cannot
convert the string "Kentucky" to either an integer or a float.

Consider the following lines of code:

print(int(17.0))
print(int("88"))
print(int("3.45"))
print(str(17.0))
print(float(-4))

18 Chapter 2

The output is the following:

17
88
ValueError: invalid literal for int() with base 10: '3.45'
'17.0'
-4.0

Bool values True and False can be converted to integers 1 and 0, respec-
tively, because 1 and 0 are often used to represent True and False. While the
float number 17.0 and string variable "88" can be converted to integers, the
string variable "3.45" can’t be converted to an integer because it has values
after the decimal point.

You can convert almost anything into a string variable; for example, the
float number 17.0 can be converted to the string variable "17.0". You can
also convert any integer to a float: for example, the integer –4 can be con-
verted to the float –4.0.

Rules for Variable Names
Certain rules exist for naming variables, and not everything can be used as
a variable name. A variable name must start with a letter (either uppercase
or lowercase) or an underscore (_). For example, you can’t use 8python as a
variable name because it starts with a number.

The only special character a variable name can have is the underscore,
so special characters such as @ or & are not allowed. See the Python naming
conventions at https://www.python.org/dev/peps/pep-0008/#id34/.

Variable names can’t be Python keywords or Python built-in functions.
To get the list of all keywords, run these two lines of code in the Spyder
editor:

from keyword import kwlist
print(kwlist)

The output is a full list of Python keywords:

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break',
'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally',
'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

Variable names can, however, contain keywords. For example, first_break
and class1 are valid variable names, even though break and class are not.

Variable names should not be Python built-in functions. Figure 2-1 lists
those functions, which are found in the Python documentation at https://
docs.python.org/3/library/functions.html. You would do well to familiarize your-
self with the list and avoid using these terms as variable names.

N O T E More information about Python built-in functions and their definitions can be found
in the Python documentation.

https://www.python.org/dev/peps/pep-0008/#id34/
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

Python Refresher 19

Figure 2-1: List of Python built-in functions

 Loops and Conditional Execution
Loops and conditional statements let you make decisions in your code, so
that certain code will run if a particular thing happens.

Conditional Execution
The if statement allows your code to take particular actions based on
whether a condition is met. Consider the following lines of code:

x = 5
if x > 0:
 print('x is positive')
else:
 print('x is nonpositive')

Here, x > 0 is the condition. If the value of x is larger than 0, the condi-
tion is met, and the script prints the message x is positive. Conditionals
in Python always need a colon (:) after the conditional statement. If the
condition is not met, the script moves to the else branch and prints x is
nonpositive.

We can also have more than two conditions by using the elif keyword.
Consider the following code:

x = 5
if x > 0:
 print('x is positive')
elif x == 0:
 print('x is zero')
else:
 print('x is negative')

20 Chapter 2

Python uses the double equal sign (==) as a comparison operator, to dis-
tinguish it from value assignments when we use a single equal sign (=). This
script has three possible outcomes, depending on which condition is met: x
is positive, x is zero, or x is negative.

If we require more than three conditions, the first condition must fol-
low the if statement, the last condition must come after the else statement,
and all conditions between should have the elif keyword:

score = 88
if score >= 90:
 print('grade is A')
elif score >= 80:
 print('grade is B')
elif score >= 70:
 print('grade is C')
elif score >= 60:
 print('grade is D')
else:
 print('grade is F')

The script prints out the letter grade based on the value of the score: A if
the score is greater or equal to 90; if not, B if the score is above 80, and so on.

Loops
One great advantage of computers is their ability to repeat the same tasks
many times at a fast rate. This is known as looping, or iterating, in program-
ming. Python has two types of loop: the while and the for loop.

The while Loop

A while loop is used to execute a block of code as long as a certain condition
is met. Here we use the while statement to create a loop that adds 1 to the
variable n every time it loops until n reaches 3. Then the loop exits, and the
script prints finished. Save this as whileloop.py:

n = 0
while n < 3:
 n = n+1
 print(n)
print('finished')

We first assign n a value of 0. Then, the script starts the while loop with
the condition n < 3. As long as the condition is met, the loop keeps run-
ning. Notice the colon, which tells Python to expect the indented lines that
follow as part of the loop. Those lines will execute every time the loop runs.
The last line, which is not indented, runs only after the loop exits.

In the first iteration, the value of n increases from 0 to 1, and the
updated value of n is printed out. In the second iteration, the value of n

Python Refresher 21

increases to 2, and the updated value of n is printed out. In the third itera-
tion, the value of n increases to 3, and 3 is printed out. When the script goes
to the fourth iteration, the condition n < 3 is no longer met, and the loop
stops. After that, the last line is executed. As a result, we see the following
output from whileloop.py:

1
2
3
finished

The while loop is most useful when we don’t know the number of itera-
tions we need beforehand, even though it can also be used to perform the
same tasks as a for loop. Later in this book, we often use the statement while
True to create an infinite loop that puts the script in standby mode.

The for Loop

The for loop is generally used when you want to execute a block of code a
fixed number of times. The following script, forloop.py, is an example of a
for loop that does the same as the while loop we just made, adding 1 to the
variable n until n reaches 3:

for n in range(3):
 n = n + 1
 print(n)
print('finished')

We start by using range(), a built-in function in Python, to produce a range
of values from 0 to 2 (Python always begins counting from 0). The line tells
the script to loop through the three values, one value per loop, and execute
the next two lines of code for each value, adding 1 to n per loop. When the
range has been used up, the loop exits, and we print finished.

The code in forloop.py produces the same output as whileloop.py.

Loops in Loops
You can place a loop inside another loop. This is known as nesting. Nested
loops are useful when, for each iteration in the outer loop, you need to
repeat certain jobs for each iteration in the inner loop. The example script
loop_in_loop.py loops through a list and a tuple, printing each member of
the list with each member of the tuple, one pair per iteration:

for letter in ["A", "B", "C"]:
 for num in (1, 2):
 print(f"this is {letter}{num}")

First, we start the outer loop with for, and then the first indented line
starts the inner loop. The script takes the first value in the outer loop, goes
through all iterations in the inner loop, and prints a message at each itera-
tion. It repeats the process again with the second value of the outer loop.

22 Chapter 2

We need to indent the content of the inner loop twice so the script knows
which lines belong to which loops. The final output from loop_in_loop.py is
shown here:

this is A1
this is A2
this is B1
this is B2
this is C1
this is C2

Notice that we use the f"{}" string-formatting approach. The string
f"this is {letter}{num}" tells Python to replace whatever is in the curly
brackets with the actual value of the variable mentioned.

N O T E Using f-strings to format strings works only in Python versions 3.6 or newer.
If you’re using an older version of Python, use the syntax "this is {0}{1}".
format(letter,num) instead.

You can nest loops pretty much indefinitely, and the script will iterate
through all values in the innermost loop for each combination of values in
the medium and outer loops. However, nesting too many loops can make
your code difficult to read and isn’t generally recommended practice.

Loop Commands
Loops have a few commands that are useful for controlling the way your
loops behave—namely, continue, break, and pass. These commands allow you
to make decisions within a loop by using the if statement.

continue

The continue command tells Python to stop executing the rest of the commands
for the current iteration and to go to the next iteration. You use continue when
you want to skip certain actions when certain conditions are met in a loop. For
example, the script forloop1.py uses the continue command to skip printing the
number 2 and go to the next iteration:

for n in (1, 2, 3):
 if n == 2:
 continue
 1 print(n)
print('finished')

When the value of n is 2, line 1 will not be executed because the continue
command tells the script to skip it and go to the next iteration. The output
from this script is as follows:

1
3
finished

Python Refresher 23

break

The break command tells Python to break the loop and skip all remaining
iterations. You use break when you want to exit the loop. The example script
forloop2.py uses the break command to exit the for loop when the number
reaches value 2:

for n in (1, 2, 3):
 if n == 2:
 break
 print(n)
1 print('finished')

When the value of n is 2, the whole loop stops and the script goes to
line 1 directly. The output is therefore as follows:

1
finished

Later in this book, we’ll frequently use the break command to tell the
script to stop the infinite loop generated by the statement while True.

pass

The pass command tells Python to do nothing, and it is used when a com-
mand line is needed but no action needs to be taken. We often use it along
with try and except, and we’ll revisit this command later in this book. The
script forloop3.py uses a pass command to tell the script to take no action
when the value of the number is 2:

for n in (1, 2, 3):
 if n == 2:
 pass
 print(n)
print('finished')

When the value of n is 2, no action needs to be taken. Therefore, here’s
the output from the preceding script:

1
2
3
finished

This is the same as the output from forloop.py.

 Strings
A string is a sequence of characters inside single or double quotation marks.
The characters in the string can be letters, numbers, whitespace, or special
characters. We’ll discuss how elements in a string are indexed, how to slice
them, and how to join multiple strings together.

24 Chapter 2

String Indexing
The characters in strings are indexed from left to right, starting at 0. This
is because Python uses zero-based indexing, so the first element is always
indexed as 0 instead of 1.

You can access characters in a string by using the square bracket opera-
tor and the index of the character you want:

msg = "hello"
print(msg[1])

Since e is the second character in the string "hello", the output is this:

e

Python also uses negative indexing, which starts from the end of the string.
The last character in the string can be indexed as [-1], the second-to-last
one as [-2], and so on. This is useful when you have a long string and want to
locate characters at the end of it.

To find the third-to-last character of the string msg, you’d use this:

print(msg[-3])

Here’s the output:

l

String Slicing
Slicing a string means taking out a subset of characters. We again use the
square bracket operator:

msg = "hello"
print(msg[0:3])

This will output the following:

hel

The code msg[a:b] gives you the substring from position a to position b
in the string msg, where the character in position a is included in the sub-
string but the character in position b is not. Therefore, msg[0:3] produces a
substring of the first three characters in the string msg.

N O T E If you omit the starting position when slicing a string, the default starting position
is the first character. If you omit the ending position, the default is the last character.
Therefore, msg[:3] gives you the same result as msg[0:3], and msg[0:] is equivalent to
msg[:] (both produce the original string).

Python Refresher 25

String Methods
I’ll cover a few common string methods we’ll use throughout this book.

replace()

The replace() method replaces certain characters or substrings in the string
with other characters. It takes two arguments: the character you want to
replace and the character to replace it with. For example:

inp = "University of Kentucky"
inp1 = inp.replace(' ','+')
print(inp1)

We use replace() to replace all whitespaces with the plus sign. The out-
put from the preceding script is shown here:

University+of+Kentucky

This method will be useful later in the book, when we deal with the
speech recognition feature. We’ll use replace() to change the voice text
from the speech engine to a suitable format for the script.

lower()

The lower() method converts all uppercase letters in a string to lowercase.
Since Python strings are case-sensitive, converting all letters to lowercase
when matching strings means we won’t miss uppercase substrings that
should match.

Say we want to capture the spoken phrase “department of education”
via a speech recognition module. We can’t be sure whether the phrase will
be captured as Department of Education or not. You can use lower() to convert
the phrase to an all lowercase string to avoid mismatches, like so:

inp = "Department of Education"
inp1 = "department of education"
print(inp.lower() == inp1.lower())

The script tests whether the two strings inp and inp1 are the same when
we ignore case-sensitivity. Here’s the output:

True

find()

You can use find() to locate the position of a character in a string. The
method returns the index of the character in the string.

Enter the following lines of code into the Spyder editor and save it as
extract_last_name.py; then run it:

email = "John.Smith@uky.edu"
pos1 = email.find(".")
print(pos1)

26 Chapter 2

pos2 = email.find("@")
print(pos2)
last_name = email[(1+pos1):pos2]
print(last_name)

The string variable email has a pattern: it consists of the first name, the
dot, and the last name, followed by @uky.edu. We use this pattern to locate
the positions of the dot and the at sign, then retrieve the last name based
on those two positions.

First, we get the position of . and define it as a variable pos1. Then, we
find the position of @ and define it as pos2. Finally, we slice the string and
take the characters between the two positions, returning the substring as
the variable last_name.

Running the script should produce this:

4
10
Smith

The indexes of . and @ in the email are 4 and 10, respectively, and the
last name is Smith.

You can also use the string method find() to locate a substring. The
method returns the starting position of the substring in the original string.
For example, if you run the following lines of code

email = "John.Smith@uky.edu"
pos = email.find("uky.edu")
print(pos)

you’ll get the following output:

11

The output says that the substring uky.edu starts with the 12th character
in the email.

N O T E If a character or a substring is not in a string, the output is -1 instead of an error
message. For example, email.find("$") will give you an output of -1. We will use this
feature later in this book to identify cases where something is not in a string.

split()

The split() method splits a string into multiple strings, using the specified
separator. Enter the following code in Spyder and run it:

msg = "Please think of an integer"
words = msg.split()
print(words)

The output is as follows:

['Please', 'think', 'of', 'an', 'integer']

Python Refresher 27

The default delimiter (a fancy name for separator) is a whitespace (' ').
You can also specify the delimiter when you use split(). Let’s revisit the
example of extracting the last name from an email address, naming the
new script split_string.py, as in Listing 2-1.

email = "John.Smith@uky.edu"
(name, domain) = email.split('@')
(first, last) = name.split('.')
print(f"last name is {last}")

Listing 2-1: Using a delimiter to split up an email address

We first split the email into two parts by using @ as the delimiter and
assign the name and domain to a tuple. (We’ll discuss the definition of a
tuple later in this chapter.) As a result, the first element in the tuple, the
variable name, is a substring: John.Smith. The script then splits John.Smith
into the first name and the last name, using . as the delimiter, and saves
them in the tuple (first, last). Finally, we print out the second element
in the tuple as the last name.

The output is shown here:

last name is Smith

join()

The join() method joins several strings into one, as in this script, join_string.py:

mylink = ('&')
strlist = ['University', 'of', 'Kentucky']
joined_string = mylink.join(strlist)
print(joined_string)

We define & as the variable mylink, to be used as our separator. The strlist
is a list of the three words that we want to join together. We use join() to com-
bine the three words into one single string. Note that you need to put join()
after the separator. Finally, we print out the joined string:

University&of&Kentucky

Lists
A list is a collection of values separated by commas. The values in a list are
called elements, or items, and they can be values, variables, or other lists.

Create a List
To create a new list, you simply put the elements in square brackets:

lst = [1, "a", "hello"]

28 Chapter 2

We define the list lst with three elements: an integer number 1 and
two strings. Note that list() is a built-in function in Python, so you cannot
use list as a variable name or list name. I suggest that you use a descriptive
name to help future readers understand the code.

You create an empty list by using a pair of square brackets with nothing
in it:

lst1 = []

Or you can use the list() function:

lst2 = list()

Access Elements in a List
You can access the elements of a list by using the bracket operator:

lst = [1, "a", "hello"]
print(lst[2])

This will produce the following:

hello

Here, lst[2] refers to the third element in the list, because Python is
like most computer programming languages, which start counting at zero.

You can traverse the elements of a list by using a loop:

for x in range(len(lst)):
 print(lst[x])

This give us the following:

1
a
hello

We use the built-in function len() to return the length of the list, which
is 3 in this case. The built-in function range() returns values 0, 1, and 2 here.

Use a List of Lists
A list can use lists as its elements. This is useful for mapping element posi-
tions to coordinates in a two-dimensional space. Here is one example:

llst = [[1,2,3,5],
 [2,2,6,8],
 [2,3,5,9],
 [3,5,4,7],
 [1,3,5,0]]
print('the value of llst[1][2] is ', llst[1][2])

Python Refresher 29

print('the value of llst[3][2] is ', llst[3][2])
print('the value of llst[1][3] is ', llst[1][3])

Here’s the output:

the value of llst[1][2] is 6
the value of llst[3][2] is 4
the value of llst[1][3] is 8

The list llst itself contains five lists. To find the value of llst[1][2], the
code first looks at the second item in the outer list llst, which is the list [2,
2, 6, 8]. The third element of that list is 6; hence llst[1][2] = 6.

Now let’s draw a corresponding picture in a two-dimensional space, as
in Figure 2-2.

Figure 2-2: Map a list of lists to a two-dimensional space

We’ll use this in Part III to create boards for our interactive games.

Add or Multiply Lists
You can use the plus (+) and multiplication (*) operators on lists, but not in
the mathematical sense. For example, run the following lines of code:

lst = [1, "a", "hello"]
print(lst + lst)
print(lst * 3)

You should see the following output:

[1, "a", "hello", 1, "a", "hello"]
[1, "a", "hello", 1, "a", "hello", 1, "a", "hello"]

30 Chapter 2

The plus operator joins two lists into a larger list. The multiplication
operator repeats the elements in the list. If you multiply a list by 3, the ele-
ments will appear three times.

List Methods
I’ll introduce several useful list methods here that we’ll use in later chapters
of this book.

enumerate()

The enumerate() method prints out all elements in a list with their corre-
sponding indexes. Assume we have the following list names:

names = ['Adam','Kate','Peter']

The following lines of code

for x, name in enumerate(names):
 print(x, name)

will generate this output:

0 Adam
1 Kate
2 Peter

The first element at index 0 is Adam, the second at index 1 is Kate, and
so on.

You can choose the start value to be 1 instead of 0 with start=1, like so:

names = ['Adam','Kate','Peter']
for x, name in enumerate(names, start=1):
 print(x, name)

The output is as follows:

1 Adam
2 Kate
3 Peter

append()

You can append an element to the end of a list by using the append() method.
Consider this script, list_append.py:

lst = [1, "a", "hello"]
1 lst.append(2)
print(lst)

This code is appending the element 2 to the existing list lst, produc-
ing this:

[1, "a", "hello", 2]

Python Refresher 31

The new lst now has four elements.
You can append only one element at a time, and it is added to the end

of the list by default. Appending two elements will lead to an error message.
Change line 1 in the script list_append.py to the following:

lst.append(2, 3)

You’ll get the following error message:

TypeError: append() takes exactly one argument (2 given)

However, you can append multiple elements as a list. Add square brack-
ets around the two numbers as follows:

lst.append([2, 3])

You’ll get the following output:

[1, "a", "hello", [2, 3]]

The new list has four elements.
To add two or more elements to the existing list, you should use the

plus operator. For example, to add 2 and 3 as two separate elements to the
list, you can use the following line of code:

lst + [2, 3]

The output will be as follows:

[1, a, "hello", 2, 3]

remove()

You can remove an element from a list by using remove():

lst = [1, "a", "hello", 2]
lst.remove("a")
print(lst)

We remove the element that was at index 1, resulting in this:

[1, "hello", 2]

The new list no longer has element a. You can remove only one element
at a time.

index()

You can find the position of an element in a list by using the index() method:

lst = [1, "a", "hello", 2]
print(lst.index("a"))

32 Chapter 2

From this we get the following:

1

The result tells you that the element a has an index of 1 in the list.

count()

You can count how many times an element appears in a list by using count():

lst = [1, "a", "hello", 2, 1]
print(lst.count(1))
print(lst.count("a"))

This produces the following:

2
1

This tells us that the element 1 has appeared in the list twice, while the
element a has appeared once.

sort()

You can sort the elements in a list by using sort(). The elements must be
the same type (or at least convertible to the same type). For example, if you
have both integers and strings in a list, trying to sort the list will lead to the
following error message:

TypeError: '<' not supported between instances of 'str' and 'int'

Numbers are sorted from the smallest to the largest. Adding reverse=True
inside the method as an option will reverse the ordering. Here’s an example:

lst = [5, 47, 12, 9, 4, -1]
lst.sort()
print(lst)
lst.sort(reverse=True)
print(lst)

This will output the following:

[-1, 4, 5, 9, 12, 47]
[47, 12, 9, 5, 4, -1]

Letters are sorted in alphabetic order, and they come after numbers.
Consider this example:

Lst = ['a', 'hello', 'ba', 'ahello', '2', '-1']
lst.sort()
print(lst)

Python Refresher 33

The output is shown here:

['-1', '2', 'a', 'ahello', 'ba', 'hello']

Use Built-in Functions with Lists
We can use several Python built-in functions on lists directly, including
min(), max(), sum(), and len(). These produce the minimum value, the maxi-
mum value, the total sum, and the length of the list, respectively, like so:

lst = [5, 47, 12, 9, 4, -1]
print("the range of the numbers is", max(lst)-min(lst))
print("the mean of the numbers is", sum(lst)/len(lst))

Here’s the output:

the range of the numbers is 48
the mean of the numbers is 12.666666666666666

list()
You can use the list() function to convert a string to a list of characters:

msg = "hello"
letters = list(msg)
print(letters)

The output is as follows:

['h', 'e', 'l', 'l', 'o']

Interestingly enough, Python strings can be treated just like lists of
characters.

 Dictionaries
A dictionary is a collection of key-value pairs. We create a dictionary by plac-
ing the elements inside curly brackets, as shown in Listing 2-2.

scores = {'blue':10, 'white':12}

Listing 2-2: Creating a dictionary with two key-value pairs

The dictionary scores has two key-value elements, separated by a comma:
the first element is the key blue and the value 10, denoted by their position
and separated by a colon. The second element is 'white':12.

To create an empty dictionary, you use dict() or a pair of curly brackets
with nothing within them:

Dict1 = dict()
Dict2 = {}

34 Chapter 2

You can add a new element to the existing dictionary as follows:

Dict3 = {}
Dict3['yellow'] = 6
print(Dict3)

The line Dict3['yellow'] = 6 assigns a value of 6 to the key yellow. The
new Dict3 contains the element 6, which is accessible by the key yellow.

Access Values in a Dictionary
You access values in a dictionary by using the bracket operator. The key
value in each pair acts as the index. For example, we can access the values
in scores, built in Listing 2-2, as follows:

print(scores['blue'])
print(scores['white'])

This will give you the following results:

10
12

We can also use the get() method. The advantage of using get() is that
it uses None as a default value when a user requests a key that isn’t in the
dictionary, rather than returning an error. Consider the following script,
get_score.py:

scores = {'blue':10, 'white':12}
print(scores['blue'])
print(scores['white'])
print(scores.get('yellow'))
print(scores.get('yellow',0))

This produces the following:

10
12
None
0

Since the key yellow is not in scores, the method get('yellow') returns
a value of None. Further, when you put the option 0 in the method,
get('yellow', 0) returns a value of 0.

Use Dictionary Methods
You can use the keys() method to produce a list of all keys in a dictionary:

scores = {'blue':10, 'white':12}
teams = list(scores.keys())
print(teams)

Python Refresher 35

This gives us the following:

['blue', 'white']

We can use values() to produce a list of all values in a dictionary:

points = list(scores.values())
print(points)

The output is shown here:

[10, 12]

We can use items() to get the list of each key-value pair as a tuple (see
“Tuples” on page 37).

print(list(scores.items()))

This produces the following result:

[('blue', 10), ('white', 12)]

How to Use Dictionaries
The values in a dictionary can be any type of variable, a list, or even another
dictionary. Here we have a dictionary that uses lists as values:

scores2 = {'blue':[5, 5, 10], 'white':[5, 7, 12]}

The value for each key is a three-element list. The three values repre-
sent the scores each player got in the first half and second half of the game
and the total score, respectively. To find out how many points the white
team got in the second half, you can call this:

print(scores2['white'][1])

The advantage of a dictionary is that its key can be any value, not nec-
essarily an integer. This makes dictionaries useful in many situations. For
example, most_freq_word.py uses a dictionary to count words:

news = (
'''Python is an interpreted, high-level, and general-purpose programming
 language. Python's design philosophy emphasizes code readability with
 its notable use of significant whitespace.
 Its language constructs and object-oriented approach aim to help
 programmers write clear, logical code for small- and large-scale
 projects.
''')
wdcnt = dict()
wd = news.split()
for w in wd:
 wdcnt[w] = wdcnt.get(w, 0) + 1
print(wdcnt)

36 Chapter 2

for w in list(wdcnt.keys()):
 if wdcnt[w] == max(list(wdcnt.values())):
 print(w)

We define news as a string variable with a short paragraph. We then cre-
ate an empty dictionary wdcnt. Next, we split the string into a list of separate
words. We then count the frequency of each word and store the information
in the dictionary, with the word as the key and the word count as the value.
Because we use get(), if a word is not already in the dictionary as a key, the
second argument in get() assigns a value of 0 to the word.

Finally, we print out the words that have the highest frequency. The result
is as follows:

{'Python': 1, 'is': 1, 'an': 1, 'interpreted,': 1, 'high-level': 1, 'and': 3,
 'general-purpose': 1, 'programming': 1, 'language.': 1, "Python's": 1,
 'design': 1, 'philosophy': 1, 'emphasizes': 1, 'code': 2, 'readability': 1,
 'with': 1, 'its': 1, 'notable': 1, 'use': 1, 'of': 1, 'significant': 1,
'whitespace.': 1, 'Its': 1, 'language': 1, 'constructs': 1,
'object-oriented': 1, 'approach': 1, 'aim': 1, 'to': 1, 'help': 1,
'programmers': 1, 'write': 1, 'clear,': 1, 'logical': 1, 'for': 1,
'small-': 1, 'large-scale': 1, 'projects.': 1}
and

It turns out that the most frequent word in the news article is and, which
is used three times.

Switch Keys and Values
Sometimes you’ll want to switch the positions of keys and values. Now let’s
take the term dictionary literally and suppose you have the following English-
to-Spanish dictionary that uses the English word as the key and the Spanish
translation as the value:

spanish = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

You want to create a Spanish-to-English dictionary instead. You can
accomplish this by using the following line of code:

english = {y:x for x,y in spanish.items()}

The command x,y in spanish.items() retrieves all the key-value pairs in
spanish. The command y:x for x,y switches the positions of the keys and val-
ues. You must put curly brackets around everything to the right of the equal
sign so that the script treats it as a dictionary. To verify, enter this:

print(english)

You will have the following output:

{'uno': 'one', 'dos': 'two', 'tres': 'three'}

Python Refresher 37

Combine Two Dictionaries
To combine two dictionaries x and y into one large dictionary z, you assign
z = {**x, **y}:

spanishenglish = {**spanish, **English}

The result is a new dictionary called spanishenglish with six elements:
three pairs from spanish and three pairs from english.

Tuples
A tuple is a collection of values separated by commas, similar to a list—with
the big difference that a tuple cannot be changed after it’s defined (that is,
tuples are immutable). Elements of a tuple exist inside parentheses instead
of square brackets to distinguish the tuple from a list. Here we make a tuple
and attempt to modify it:

tpl = (1, 2, 3, 9, 0)
tpl.append(4)
print(tpl)

We get the following error message:

AttributeError: 'tuple' object has no attribute 'append'

Because tuples are immutable, we cannot use methods like append() or
remove() on them. We cannot sort the elements in a tuple either.

The elements of a tuple are indexed by integers, and we can access them
by using the bracket operator:

tpl = (1, 2, 3, 9, 0)
print(tpl[3])
print(tpl[1:4])

Our output is shown here:

9
(2, 3, 9)

We saw examples of assigning values to a tuple in split_string.py
(Listing 2-1).

You can compare two tuples. This process begins with comparing their
first elements. If the first elements are the same, we check whether the sec-
ond elements match. If the second elements are also the same, we go to the
third elements, and so on, until we find a difference.

Run the following lines of code in your Spyder editor:

lt = [(1, 2), (3, 9), (0, 7), (1, 0)]
lt.sort()
print(lt)

38 Chapter 2

And you’ll see this output:

 [(0, 7), (1, 0), (1, 2), (3, 9)]

 Functions
A function is (ideally) a block of code designed to do a task. There are many
functions that do many things, but it is commonly considered best practice
to have a function that performs only one task (and does not make changes
to other variables). Some functions have defined parameters (inputs). We
can assign the function code to a variable name so we don’t have to repeat
the same code every time we need that task done. Instead, we just call the
function and enter the inputs.

Functions also improve readability, making the code more organized,
less cluttered, and less error-prone.

Use Built-in Python Functions
Python comes with many built-in functions that you can readily use, includ-
ing print() from Chapter 1. Here I’ll discuss a couple of built-in functions
we’ll use frequently in this book.

The range() Function

The range() function is used to produce a list of integers. We introduced
range() when we discussed loops on page 21. We know that, for example,
range(5) produces the values [0, 1, 2, 3, 4]. The default starting value gen-
erated by the function range() is 0, because Python uses zero indexing, but
you can also specify the starting value. For example, range(3, 6) produces
the list of the following three values: [3, 4, 5].

The default increment value is 1, but you can also specify the increment
as the optional third argument. For example, the code

for x in range(-5, 6, 2):
 print(x)

will give this output:

-5
-3
-1
1
3
5

The third argument in range(-5, 6, 2) tells the script to increase the
value by 2 for each element.

Python Refresher 39

If the increment value is a negative integer, the values in the list
decrease. For example, range(9, 0, -3) produces the list [9, 6, 3].

The input() Function

Text-to-speech is the process of converting written text into human voice, so
it’s important to know how Python takes written text inputs, using a built-in
function called input().

Run the following script in Spyder:

color = input('What is your favorite color?')
print('I see, so your favorite color is {}'.format(color))

You should see a screen similar to Figure 2-3.

Figure 2-3: A screenshot of what happens when Python is asking for input

As you can see in Figure 2-3, the script asks for your input in the lower-
right IPython console. It waits for you to type some text and press ENTER
before it continues to run. If you enter blue, the script will output the
following:

What is your favorite color? blue
I see, so your favorite color is blue.

You can ask for multiple inputs, like so:

FirstName = input('What is your first name?\n')
LastName = input('What is your last name?\n')
print(f'Nice to meet you, {FirstName } {LastName }.')

The script asks for two inputs. The sequence \n is an escape character,
inserting a new line below the question “What is your first name?”

40 Chapter 2

GE T T ING HEL P

To find out what a particular built-in function does, you can use the help() com-
mand. For example:

help(abs)

produces the following output:

abs(x, /)
Return the absolute value of the argument.

Define Your Own Functions
In addition to using built-in functions, we can build our own. I’ll show you
how to create a function, and this process will also show you how functions
work. Functions can take one or more inputs, known as arguments, or no
input at all.

A Function with No Argument

We’ll start by building a function that prints the message Finished printing.
This function takes no input:

def TheEnd():
 print('Finished printing')
for i in (1, 2, 3):
 print(i)
TheEnd()

We use def to signify a function definition, give a function name, and
follow it with empty parentheses and a colon. The colon tells Python to
expect the body of the function. All indented lines that follow are consid-
ered part of the function.

The script prints three numbers, after which we call the function. The
output is as follows:

1
2
3
Finished printing

As you can see, the command line in the function is executed only
when the function is called, not when it is defined.

Python Refresher 41

A Function with One Argument

Now we’ll write a function that takes one input. We need to write a thank-
you note to 50 people. The message is the same except for the recipient’s
name. We’ll define a function to print the message, and we need to supply
only the name for each message when we call it. We first define a function
called msgs() as follows:

def msgs(name):
 print(f"Thank you, {name}, I appreciate your help!")

The name of the function is msgs, with the variable name as its only input.
If we call the function twice as follows:

msgs("Mary")
msgs("Bob")

the output will be this:

Thank you, Mary, I appreciate your help!
Thank you, Bob, I appreciate your help!

To write the 50 thank-you notes, you can call the function 50 times:
once with each name.

A Function with Multiple Arguments

Functions can have two or more arguments as inputs. Consider the script
team_sales.py in Listing 2-3, which defines a function that needs three
inputs.

def team_sales(sales1, sales2, sales3):
 sales = sales1 + sales2 + sales3
 return sales
print(team_sales(100, 150, 120))

Listing 2-3: Defining a function with three arguments

We define a function to calculate the total sales from a team with three
members. The function uses the sales from individual members, sales1, sales2,
and sales3, as the three arguments. We calculate the total team sales, sales,
by summing the three individual sales numbers. We then tell the script the
output of the function by using the return command. As a result, when the
function team_sales() is called, you get the sum of the three sales.

If the individual sales are 100, 150, and 120, when we call the function
team_sales(), we’ll get an output of 370.

A Function That Takes an Unknown Number of Arguments

Sometimes the number of inputs is unknown. For example, you want to
define a function to calculate the total sales made by a group of salespeople,
but different groups have different numbers of salespeople. You can define a

42 Chapter 2

single function for this purpose that works regardless of the size of the group
by using the argument *args, which allows you to pass multiple values of vari-
able length to a function. Listing 2-4, total_sales.py, accomplishes the job.

def total_sales(*args):
 total = 0
 for arg in args:
 total = total + arg
 return total
--snip--

Listing 2-4: First part of total_sales.py

We start total_sales(), which takes *args as the argument. We set the
value of the variable total to 0 and then loop through each element in the
argument args. For each element in the argument, we add it to the variable
total. We output the total sales of the group. Test it out with Listing 2-5.

--snip--
print(total_sales(200,100,100,100))
print(total_sales(800,500,400))

Listing 2-5: Second part of the script total_sales.py

From this, we get the following:

500
1700

As you can see, the function takes the one argument, *args, but you can
put as many elements in the function as you want.

 Modules
You are not limited to just the Python built-in functions. The Python Standard
Library has many modules that provide other functions you can call from your
own code.

Import Modules
We’ll discuss three ways of using a function from a module and the pros
and cons of each approach.

Import the Module

The first way is to import the entire module. For example, to find the value
of the cosine of a 30-degree angle, you can first import the math module.
Then you can use the cos() function from the module by calling both the
module name and the function name: math.cos().

Python Refresher 43

Enter the following code in Spyder:

import math
print(math.cos(30))

You’ll have an output of 0.15425144988758405.
You have to import the module before you call math.cos(). If you don’t

import math and just run this command:

print(math.cos(30))

Python will give you an error message:

NameError: name 'math' is not defined

Also, you must always put the module name in front of the function
name when you call the function. Enter the following two lines of code in
Python:

import math
print(cos(30))

You’ll get this error message:

NameError: name 'cos' is not defined

This is because Python doesn’t know where to find the cos() function,
even though you have imported the math module.

Import the Functions

If you want only one or two functions from a certain module, you can save
time by importing just those one or two functions. This approach allows
you to use the function name without having to append the module name.
Enter the following two lines of code:

from math import cos, log
print(cos(30)+log(100))

You’ll get the correct output, 4.759421635875676. We don’t need to use
math because we told the script where to look for the two functions. This is
particularly useful if you need to use the function dozens or hundreds of
times in your script.

Use Asterisk Import

If your script relies heavily on many functions in a module, you can poten-
tially save time by importing all functions from the module by using asterisk
import: from module import *. However, many in the Python community have

44 Chapter 2

cautioned against this approach because the import * statement can pollute
your namespace, potentially interfering with functions you define (or func-
tions from other modules). We won’t use this method in the book.

Create Your Own Modules
In Listing 2-3, we defined team_sales() in team_sales.py and then called the
function. You might need to calculate the total sales in many scripts. You
can do so without rewriting the code in each script by building the function
into a module.

Let’s first create a script called create_local_module.py, as shown in
Listing 2-6.

def team_sales(sales1, sales2, sales3):
 sales = sales1 + sales2 + sales3
 return sales

Listing 2-6: Code for the local module

This script defines team_sales() but does not call it. Next, create the new
script import_local_module.py in Listing 2-7 and save it in the same folder as
create_local_module.py.

from create_local_module import team_sales
print(team_sales(100, 160, 200))
print(team_sales(200, 250, 270))
print(team_sales(150, 120, 200))

Listing 2-7: Code to import the local module

When you import a module, Python first looks in the directory the
importing script is stored in, so the module must be in the same folder.
This kind of module is known as a local module.

If you run the script, you’ll get the following results:

460
720
470

The team_sales() function correctly calculates the total sales for three
teams.

Local modules work the same as modules in the Python Standard Library,
but they need to be stored in the folder Python expects them to be in.

For modules that you download, Python stores the file path of the down-
loaded module behind the scenes and follows that path when you import it.
For example, the tkinter package is in the Python Standard Library we’ll use
later in this book. When you install it, the files are placed under a specific
path, which is something like the following on Windows:

C:\Users\ME\Anaconda3\envs\MYEV\Lib\tkinter

Python Refresher 45

It’s buried like this so you don’t accidentally alter or misplace it, which
would mean you could no longer use it.

T RY IT YOURSEL F

Create a local module based on total_sales.py to define the function total
_sales(). Import the module and use the function to calculate total sales.

Use Third-Party Modules
One of the main advantages of Python is that programmers can share
modules with one another for free. Many of these modules are not in the
Python Standard Library, including the module we’ll rely on for the text-to-
speech and the speech recognition functionality. These external modules,
known as third-party modules, can be installed separately. Before you do that,
you need to check that the module isn’t already installed.

Check Installed Modules

All modules in the Python Standard Library are automatically installed
on your machine when you install Python. Other modules may also be
installed when you download various software or modules. For example,
when you install pandas in Chapter 14, about 23 other supporting modules
will be installed because pandas depends on them.

You can check whether a module is installed on your computer already
with the following in your Spyder editor:

help("modules")

This will provide you with the list of all modules installed on your com-
puter. However, it can take a long time for Python to list all the modules
and for you to check them.

N O T E For a list of all modules in the Python Standard Library, go to https://docs.python
.org/3/library/. The list is constantly changing because more and more modules are
added to the library over time.

Alternatively, you can check whether a module is installed by trying to
import it:

import ModuleName

To check whether pandas is installed on your computer, run import pandas,
and if you receive no error message, the module is already installed. If the
output shows ModuleNotFoundError, you need to install it. Let’s see how.

https://docs.python.org/3/library/
https://docs.python.org/3/library/

46 Chapter 2

Pip Install Modules

The gTTS module we’ll use in Chapter 4 is not included in Python Standard
Library, so we’ll pip install it. Open the Anaconda prompt (in Windows) or
a terminal (in Mac or Linux), and enter this:

pip install gTTS

Follow the onscreen instructions all the way through, and the gTTS
module will be installed.

Conda Install Modules

If you can’t find the module you want through pip install, try conda install.
We’ll install the yt module by using the following in the Anaconda

prompt (in Windows) or a terminal (in Mac or Linux):

conda install yt

Many people think pip install and conda install are the same, but they’re
not. Pip is the Python packaging authority’s recommended tool for installing
packages from the Python packaging index. You can install Python software
only by using pip install. In contrast, Conda is a cross-platform package and
environment manager that installs not only Python software but also pack-
ages in C or C++ libraries, R packages, or other software.

As you build more and more projects in Python, you’ll install many mod-
ules. Some modules may interfere with other modules, and different projects
may use different versions of the same module. To avoid problems of clash-
ing modules, I recommend you build a virtual environment for each project.
A virtual environment is a way to isolate projects from each other.

 Create a Virtual Environment
To create a virtual environment, open an Anaconda prompt (in Windows)
or a terminal (in Mac or Linux). We’ll name the virtual environment for
the projects in this book chatting. Enter the following command:

conda create -n chatting

After pressing ENTER, follow the instructions onscreen and press y
when the prompt asks you y/n. Once you have created the virtual environ-
ment on your machine, you need to activate it.

Activate the Virtual Environment in Windows
In the Anaconda prompt (in Windows) or a terminal (in Mac or Linux),
type this:

conda activate chatting

Python Refresher 47

In Windows, you’ll see the following on your Anaconda prompt:

(chatting) C:\>

You can see the (chatting) prompt, which indicates that the command
line is now in the virtual environment chatting that you’ve just created.

On a Mac, you should see something similar to the following in the ter-
minal (the username will be different):

(chatting) Macs-MacBook-Pro:~ macuser$

In Linux, you should see something similar to this on your terminal
(the username will be different):

(chatting) mark@mark-OptiPlex-9020:~$

N O T E If you’re using some versions of Linux, use activate chatting instead of conda acti-
vate chatting to activate the virtual environment. You might not see the (chatting)
part on your terminal even if the virtual environment is activated.

Set Up Spyder in the Virtual Environment in Windows
Now we need to install Spyder in the new virtual environment. First make
sure you’ve activated the virtual environment. Then run this command:

conda install spyder

To then launch Spyder, execute the following command in the same
terminal with the virtual environment activated:

spyder

 Summary
In this chapter, you learned the four variable types and how to convert
one type to another. You also learned how functions work in Python. You
learned three ways to import a module into a script and the pros and cons
of each approach.

You also created your own functions. You created a local module and
imported it to a script to make clean and concise code. Finally, you created
and activated a virtual environment in order to separate packages in differ-
ent projects.

In Chapter 3, you’ll learn how to install speech recognition–related
modules to make Python understand the human voice.

48 Chapter 2

 End-of-Chapter Exercises

1. Assume:

name1 = 'Kentucky '
name2 = "Wildcats"

What is the output from each of the following Python statements? First
write down the answer and then run the command in Spyder to verify.

print(type(name1))
print(type(name2))
print(name1 + name2)
print(name2 + name1)
print(name2 + ' @ ' + name1)
print(3 * name2)

2. Assume:

x = 3.458
y = -2.35

What is the result from each of the following Python statements?

print(type(x))
print(type(y))
print(round(x, 2))
print(round(y, 1))
print(round(x, 0))

3. Here are some examples of integers:

a = 57
b = -3
c = 0

What is the result from each of the following Python statements?

print(type(b))
print(str(a))
print(float(c))

4. What is the output from each of the following Python statements?

print(type(5==9))
print('8<7')
print(5==9)
print(type('8<7'))
print(type('True'))

Python Refresher 49

5. What is the output from each of the following Python statements?

print(int(-23.0))
print(int("56"))
print(str(-23.0))
print(float(8))

6. What is the output from each of the following Python statements?

print(int(True))
print(float(False))
print(str(False))

7. What is the output from each of the following Python statements?

print(bool(0))
print(bool(-23))
print(bool(17.6))
print(bool('Python'))

8. Are the following variable names valid, and why?

global
2pirnt
print2
_squ
list

9. The loop command break is used in the following script. What should
the output be? First write down the answer and then run the command
in Spyder and verify.

for letter in ("A", "B", "C"):
 if letter == "B":
 break
 for num in (1, 2):
 print(f"this is {letter}{num}")

10. The loop command continue is used in the following script. What should
the output be? First write down the answer and then run the command
in Spyder and verify.

for letter in ("A", "B", "C"):
 if letter == "B":
 continue
 for num in (1, 2):
 print(f"this is {letter}{num}")

50 Chapter 2

11. The loop command pass is used in the following script. What should the
output be? First write down the answer and then run the command in
Spyder and verify.

for letter in ("A", "B", "C"):
 if letter == "B":
 pass
 for num in (1, 2):
 print(f"this is {letter}{num}")

12. What is the output from each of the following commands? First write
down the answer and then run the command in Spyder to verify it.

a.

for i in range(5):
 print(i)

b.

for i in range(10, 15):
 print(i)

c.

for i in range(10, 15, 2):
 print(i)

13. What is the value of team_sales(50, 100, 120) according to the defined
function in this chapter?

14. Change the module import method in the script import_local_module.py
from the from module import function method to the import module method.
Name the new script import_local_module1.py and make sure it produces
the same output.

15. Grades for the midterm project of eight groups in a class are in a list
midterm = [95, 78, 77, 86, 90, 88, 81, 66]. Use Python built-in functions
on the list to calculate the range and the average of the grades.

16. Assume inp = "University of Kentucky", and determine inp[5:10], inp[-1],
inp[:10], and inp[5:].

17. If email = John.Smith@uky.edu, what is email.find("y")?

18. Assume llst = [[1,2,3,5],[2,2,6,8],[2,3,5,9],[3,5,4,7],[1,3,5,0]]. What
are the values of llst[2], llst[2][2], and llst[3][0]?

19. What is the output from each of the following Python statements?

[1, "a", "hello", 2].remove(1)
[1, "a", "hello", 2].append("hi")

Python Refresher 51

20. Assume scores2 = {'blue':[5, 5, 10], 'white':[5, 7, 12]}. What is
scores2['blue'][2]?

21. Here is an example of a tuple: tpl = (1, 2, 3, 9, 0). What is tpl[3:4]?

22. You have a list lst = [1, "a", "hello", 2]. Create a dictionary with four
key-value pairs: the key is the position of each element in lst, and the
value is the element at that position.

PART II
L E A R N I N G T O T A L K

3
S P E E C H R E C O G N I T I O N

In this chapter, we’ll begin interacting with
Python through speech. We’ll first install

the SpeechRecognition module; the installation
process can be a source of frustration and will

therefore require some careful attention. You’ll then
create a script to let Python recognize your speech
and print it out to ensure that the voice recognition
function works smoothly on your computer.

You’ll use voice control to complete several tasks, including voice dic-
tation, opening web browsers, opening files, and playing music on your
computer. You’ll put all code related to speech recognition into a custom
local module so the final script is concise and easy to read.

Before you begin, set up the folder /mpt/ch03/ for this chapter. All
scripts in this chapter are available at the book’s resources page, https://
www.nostarch.com/make-python-talk/.

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

56 Chapter 3

NE W SKIL L S

• Installing and customizing speech recognition tools

• Using try and except to handle potential errors

• Performing voice-controlled web search

• Making cross-platform, portable code

• Accessing operating system functionalities

• Creating custom Python modules

 Install the SpeechRecognition Module
Installing the SpeechRecognition module can be tricky, even to the point of
frustration. Don’t panic; we’ll discuss how to install it in Windows, Mac, and
Linux. Installing the SpeechRecognition module takes an extra step compared
to most modules because it relies on the pyaudio module, which we’ll have
to install manually. The pyaudio module provides bindings for the cross-
platform audio input/output library portaudio.

You cannot pip install the pyaudio module in the Anaconda prompt
either. Instead, you need to conda install it.

N O T E Even though we have gone to great lengths to test the steps required to install these
modules on a variety of hardware and software platforms, there is a chance that some-
thing might not work on your system. If this happens, be sure to check the errata page
for updates, search the forums for the Python packages, or contact the author.

In Windows
First, you need to activate the virtual environment chatting from Chapter 2.
Go to your Anaconda prompt and enter the following:

conda activate chatting

You should see a modified prompt:

(chatting) c:\>

Note that the (chatting) in the prompt indicates that you are now in
the virtual environment chatting. If the command hasn’t worked, return
to Chapter 2 for full instructions on how to create and activate a virtual
environment.

Next, enter the following in the Anaconda prompt:

(chatting) c:\> pip install SpeechRecognition

Speech Recognition 57

If you then try to import it and run a script, Spyder will tell you that you
need the pyaudio module for the SpeechRecognition module to run correctly.

With the virtual environment chatting activated, run the following in
your Anaconda prompt:

(chatting) c:\> conda install pyaudio

Follow the instructions all the way through.

In Mac or Linux
First, activate the virtual environment chatting. Open a terminal and enter
and execute the following:

conda activate chatting

Next, execute the following in the terminal:

pip install SpeechRecognition

If you now try to import SpeechRecognition and run a script, Spyder will
tell you that you need pyaudio for SpeechRecognition to run correctly. With the
virtual environment chatting activated, run the following command in your
terminal:

conda install pyaudio

Follow the instructions all the way through.

 Test and Fine-Tune SpeechRecognition
We’ll next test and fine-tune the SpeechRecognition module so Python can
take your voice commands.

Import SpeechRecognition
To import SpeechRecognition in your Python scripts, use the following
command:

import speech_recognition

Note that there is a small difference in the module name when you
install it and when you import it: one is SpeechRecognition and the other is
speech_recognition. Make sure you don’t miss the underscore in the module
name when you import it.

You also need to have a microphone plugged into the computer if you’re
using a desktop. Most laptops come with a built-in microphone, but some-
times having an external one is convenient so you can speak close to the
microphone and avoid ambient noise.

58 Chapter 3

W A R N I N G If you have multiple microphone devices on your computer, make sure your Python
script is using the right one as the input device. Better yet, make sure that your micro-
phone is indeed working by testing it first with other applications on your computer
(for example, Voice Recorder in Windows, Voice Memos or QuickTime Player in Mac,
or Audacity in Linux).

Test SpeechRecognition
Next, let’s test the hardware and software. Enter Listing 3-1 into your
Spyder editor and save it as sr.py, or you can download the file from the
book’s resources.

import speech_recognition as sr
speech = sr.Recognizer()
print('Python is listening...')
with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 audio = speech.listen(source)
 inp = speech.recognize_google(audio)
print(f'You just said {inp}.')

Listing 3-1: Testing SpeechRecognition

We import the SpeechRecognition module. Next, we call Recognizer() to
initiate a Recognizer instance from the module so that your script is ready to
convert voice to text. We save it as the variable speech. We also print a mes-
sage that lets you know the microphone is ready to receive speech input.

N O T E If a module has a long name, writing out the full module name in the script is
time-consuming (and can reduce the code’s readability). You can use a shorter alias
instead. For example, import speech_recognition as sr allows you to use sr instead
of speech_recognition whenever you refer to the module.

We tell the script that the source of the audio comes from the micro-
phone using Microphone(). We use the adjust_for_ambient_noise() method to
reduce the impact of the ambient noise on your voice input. The script cap-
tures the voice input from the defined microphone, converts it into text, and
saves in inp. We print out the value of inp.

Note in this script, the Recognizer instance uses recognize_google()for
recognizing speech from the audio source. This method uses the Google
Web Speech application programming interface (API) and requires a good
internet connection. Other methods available to the Recognizer instance in
the SpeechRecognition module include recognize_bing(), which uses Microsoft
Bing Speech; recognize_ibm(), which uses IBM Speech to Text; and so on.
The only method that works offline is recognize_sphinx(), which uses the
services of CMU Sphinx. However, the accuracy with recognize_sphinx() is
not nearly as good as with recognize_google(), so we’ll use recognize_google()
throughout this book.

Speech Recognition 59

Run sr.py and say something simple, like “Hello” or “How are you?”, to
test if Python correctly prints out your voice input. You should see the fol-
lowing if you say, “How are you?”:

Python is listening...
You just said how are you.

If the script is working, you’ve successfully installed the speech recog-
nition feature. If not, double-check the previous steps and make sure your
microphone is connected properly. Also make sure that you are in a rela-
tively quiet area with a good internet connection.

Notice that Python converts almost all voice input as lowercase text,
which can be a good feature since string variables are case-sensitive. This
way, Python won’t miss a command because of capitalization.

T RY IT OU T

Run sr.py and try speaking a few simple phrases to the microphone to make
sure the script understands you.

Fine-Tune the Speech Recognition Feature
Now you’ll fine-tune the speech recognition code to make it more user-
friendly for the rest of the book. We’ll use try and except on a few common
errors to allow the execution of the code to continue after encountering
errors, instead of causing the script to crash.

The common error UnknownValueError happens when the Google speech
recognition server cannot understand the audio, either because the speech
isn’t clear or because of ambient noise. The error RequestError happens when
the Google speech recognition request fails, either because of a bad internet
connection or because the server is too busy. The error WaitTimeoutError hap-
pens when the script doesn’t detect any audio from the microphone for a
long period.

Without using try and except, the script crashes, and you have to start the
script all over again. By using the exception-handling constructs, the script
will continue without crashing. The errors I mentioned aren’t harmful enough
to be worth handling, so our scripts will just allow those errors to pass.

Listing 3-2, stand_by.py, uses an infinite loop to first stand by and then
repeatedly take voice inputs and print them out. This way, we don’t have to
rerun the script every time we want the script to take our voice inputs.

import speech_recognition as sr

speech = sr.Recognizer()
while True:
 print('Python is listening...')
 inp = ""

60 Chapter 3

 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 1 try:
 audio = speech.listen(source)
 inp = speech.recognize_google(audio)
 except sr.UnknownValueError:
 pass
 except sr.RequestError:
 pass
 except sr.WaitTimeoutError:
 pass
 2 print(f'You just said {inp}.')
 if inp == "stop listening":
 print('Goodbye!')
 break

Listing 3-2: Code for stand_by.py

We start a while loop to put the script in standby. This way, after taking
your voice input, the script prints out what you said and starts listening again.
At each iteration, the script prints Python is listening so you know it’s ready.
We define the variable inp as an empty string at the beginning of each itera-
tion. Otherwise, if the user doesn’t say anything for a while, the script will
retrieve the inp value from the previous iteration. By clearing the string, we
avoid any potential mix-ups.

We use exception handling when connecting to the Google speech-
recognition server 1. If there is an UnknownValueError, a RequestError, or a
WaitTimeoutError, we let the script continue without crashing.

At each iteration, the script prints what you said so that you can check if
the speech recognition software has correctly captured your voice 2.

Finally, we don’t want the script to run forever, so we add a condition to
stop it. When you say, “Stop listening,” the if branch is activated, the script
prints Goodbye!, and the while loop stops.

Here’s a sample output, with my voice input in bold:

Python is listening...
You just said hello.
Python is listening...
You just said how are you.
Python is listening...
You just said today is a Saturday.
Python is listening...
You just said stop listening.
Goodbye!

Next, you’ll put the speech recognition feature to use in several projects.
Some are practical and useful, and others are for building up skills for later
chapters.

N O T E Sometimes the speech recognition takes a long time to process, especially if there is
ambient noise and the internet connection is slow. Try to test the script in a quiet
place with a good internet connection.

Speech Recognition 61

T RY IT OU T

Run stand_by.py and say two simple phrases. After that, say, “Stop listening” to
end the script.

 Perform a Voice-Controlled Web Search
Our first project is a script to navigate the web by using voice. You’ll learn to
use the webbrowser module to open a browser on your computer. Then you’ll
add voice-control functionality to open the browser and perform various
searches online.

Use the webbrowser Module
The webbrowser module gives you tools to open a website by using the default
browser on your computer. The module is in the Python Standard Library,
so no installation is needed.

To test the webbrowser module on your computer, enter the following
lines of code in your Spyder editor and run them:

import webbrowser
webbrowser.open("http://"+"wsj.com")

We use "http://"+ inside the open() function so that you need to input
only the main body of the web address instead of the full URL. This is to
prepare you for voice activation in the next section. The web browser will
automatically correct the URL if it uses https:// instead of http:// or if www is
in the full URL.

A new web browser window should open on the Wall Street Journal web-
site. Microsoft Edge is the default browser on my computer, and the result is
shown in Figure 3-1.

Figure 3-1: Result of using the webbrowser.open("http://"+"wsj.com") command

62 Chapter 3

Add Voice Control
Now we’ll add the speech recognition feature. Save Listing 3-3 as
voice_browse.py.

import webbrowser
import speech_recognition as sr

speech = sr.Recognizer()
1 def voice_to_text():
 voice_input = ""
 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 audio = speech.listen(source)
 voice_input = speech.recognize_google(audio)
 except sr.UnknownValueError:
 pass
 except sr.RequestError:
 pass
 except sr.WaitTimeoutError:
 pass
 return voice_input
2 while True:
 print('Python is listening...')
 inp = voice_to_text()
 print(f'You just said {inp}.')
 if inp == "stop listening":
 print('Goodbye!')
 break
 elif "browser" in inp:
 inp = inp.replace('browser ','')
 webbrowser.open("http://"+inp)
 continue

Listing 3-3: Code for voice_browse.py

We import the two modules needed for this script: webbrowser and
SpeechRecognition. At 1, we define the voice_to_text() function, which
contains most of the steps in stand_by.py: it starts with the empty string
voice_input, converts the audio from the microphone to text, and puts
it in voice_input. It also makes exceptions for the UnknownValueError, the
RequestError, and the WaitTimeoutError. Once called, the function will
return the value stored in voice_input.

The script starts an infinite loop to continuously take voice input 2. At
each iteration, it prints Python is listening... so you know it’s ready.

W A R N I N G Don’t start speaking into the microphone before you see the message Python is
listening..., or part (or even all) of your speech may not be captured by the speech
recognition software.

Speech Recognition 63

We call voice_to_text() to capture your voice input and save the con-
verted text in inp. Note that I intentionally use a different variable name for
the local variable voice_input and the global variable inp to avoid confusion.

If you say, “Stop listening” to the microphone, the if branch is acti-
vated. The script prints Goodbye! and stops running. If the word browser is
in your voice command, the elif branch is activated. The script then puts
http:// and whatever you say next in the address bar and opens the web
browser. For example, if you say “browser abc.com,” the replace() method
will change “browser” and the space after it to an empty string, which effec-
tively changes inp to abc.com.

Here’s one sample output, with my voice input in bold:

Python is listening...
You just said browser cnn.com.
Python is listening...
You just said browser pbs.org.
Python is listening...
You just said stop listening.
Goodbye!

The associated web browser pop-ups are as shown in Figure 3-2.

Figure 3-2: One of the sample outputs from voice_browse.py

You use the word browser instead of browse to ensure that the script under-
stands you: if you say “Browse” to your microphone, Python might convert it to
brows instead. You may encounter several instances where slight adjustments
will need to be made. Since everyone has a different voice, microphone,
and diction (accent, inflection, and intonation), your adjustments will
likely be different from mine.

64 Chapter 3

T RY IT OU T

Run voice_browse.py and use it to visit http://nbc.com/.

Perform a Google Search
We’ll now modify voice_browse.py so you can voice-activate a Google search.
All you need to change is this one line of code from voice_browse.py:

 webbrowser.open("http://"+inp)

Change it to this:

 webbrowser.open("http://google.com/search?q="+inp)

Then save the modified script as voice_search.py. (You can also download it
from the book’s resources page.)

Here we are using the fact that whenever Google performs a search, it
puts the search term after http://google.com/search?q= and uses it as the URL
in the address bar. For example, when you search how many liters are in a
gallon in Google, you get the same result as if you entered the URL http://
google.com/search?q=how many liters are in a gallon.

Run voice_search.py in your Spyder editor. Ask a question, like “Browser
yards in a mile,” into the microphone. The script should open your default
browser, perform a Google search for yards in a mile, and show a result
similar to Figure 3-3.

Figure 3-3: The result when you say “browser yards in a mile”

You can also use the script in any way you use Google, for example, as a
voice-controlled dictionary. If you want to know the exact definition of the
word diligence, you can say, “Browser define diligence.”

http://nbc.com/

Speech Recognition 65

T RY IT OU T

Run voice_search.py and find out how many liters are in a gallon.

 Open Files
With the capability of speech recognition in a Python script, you can do
many things with voice control. We’ll build a script to open various types of
files, including text files, PDF files, and music files.

Use the os and pathlib Modules to Access and Open Files
You can use the os and pathlib modules to access files and folders on your
computer. The os module accesses operating system functionalities such
as go to a folder, open a file, and so on. However, the commands differ across
operating system. For example, to open a file, the command is explorer in
Windows, open in Mac, and xdg-open in Linux.

To make your scripts portable cross-platform, we’ll use the platform
module, which lets the script automatically identify your operating system
and then choose the appropriate command for you. The pathlib module
allows you to find out the file paths and specify a file or folder path. Luckily,
pathlib is cross-platform, so you don’t have to worry about a forward slash or
backslash. All three modules—os, pathlib, and platform—are in the Python
Standard Library, so no installation is needed.

In your chapter folder, create a subfolder called files and save a file
example.txt in it. Then enter Listing 3-4 in your Spyder editor and save it as
os_platform.py.

import os
import pathlib
import platform

myfolder = pathlib.Path.cwd()
print(myfolder)
myfile = myfolder/'files'/'example.txt'
print(myfile)
if platform.system() == "Windows":
 os.system(f"explorer {myfile}")
elif platform.system() == "Darwin":
 os.system(f"open {myfile}")
else:
 os.system(f"xdg-open {myfile}")

Listing 3-4: Code for os_platform.py

66 Chapter 3

We import the modules, then use Path.cwd() from pathlib to find the cur-
rent working directory of the script. We’ll use this as the starting path to
navigate from.

We then specify the path and name of the file we want to open. In the
pathlib module, we use a forward slash to denote subfolders no matter what
operating system you are using. The command /'files' tells the script to go
to the subfolder files, and /'example.txt' indicates which file to define as myfile.

The system() method from the os module executes the command in a
subshell. The explorer command opens a folder or a file on your computer
in Windows. However, if you’re using Mac, the system() method in the os
module uses the open command, and in Linux, the command is xdg-open.
Therefore, the script opens the file example.txt in the subfolder files.

For example, say you’re using Windows and have saved the script in
your chapter folder C:\chat\mpt\ch03. After running the script, you’ll have
the following output in the IPython console:

C:\chat\mpt\ch03
C:\chat\mpt\ch03\files\example.txt

At the same time, the file example.txt should open.

Open Files via Voice Control
We’ll now demonstrate how to open various file types, like MP3; Microsoft
Word, PowerPoint, and Excel; and PDF files. Before running the following
script, save an MP3 file, a Word file, a PowerPoint file, an Excel file, and a
PDF file in the subfolder files you just created in your chapter folder. Name
the five files presentation.mp3, lessons.docx, graduation.pptx, book.xlsx, and desk.
pdf, respectively. It’s best if the files are not too large.

N O T E You need to have proper software installed on your computer to open the five files. To
make sure, you can double-click each one to see if it opens on your computer. If you
don’t have software to open all file types, try only the ones that you can open.

Listing 3-5 shows voice_open_file.py, which can also be downloaded from
the book’s resources page.

import os
import pathlib
import platform

import speech_recognition as sr

speech = sr.Recognizer()
directory = pathlib.Path.cwd()

1 def voice_to_text():
 voice_input = ""
 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:

Speech Recognition 67

 audio = speech.listen(source)
 voice_input = speech.recognize_google(audio)
 except sr.UnknownValueError:
 pass
 except sr.RequestError:
 pass
 except sr.WaitTimeoutError:
 pass
 return voice_input
def open_file(filename):
 if platform.system() == "Windows":
 os.system(f"explorer {directory}\\files\\{filename}")
 elif platform.system() == "Darwin":
 os.system(f"open {directory}/files/{filename}")
 else:
 os.system(f"xdg-open {directory}/files/{filename}")
2 while True:
 print('Python is listening...')
 inp = voice_to_text().lower()
 print(f'You just said {inp}.')
 if inp == "stop listening":
 print('Goodbye!')
 break
 elif "open pdf" in inp:
 inp = inp.replace('open pdf ','')
 myfile = f'{inp}.pdf'
 open_file(myfile)
 continue
 elif "open word" in inp:
 inp = inp.replace('open word ','')
 myfile = f'{inp}.docx'
 open_file(myfile)
 continue
 elif "open excel" in inp:
 inp = inp.replace('open excel ','')
 myfile = f'{inp}.xlsx'
 open_file(myfile)
 continue
 elif "open powerpoint" in inp:
 inp = inp.replace('open powerpoint ','')
 myfile = f'{inp}.pptx'
 open_file(myfile)
 continue
 elif "open audio" in inp:
 inp = inp.replace('open audio ','')
 myfile = f'{inp}.mp3'
 open_file(myfile)
 continue

Listing 3-5: Code for voice_open_file.py

As with voice_browse.py, we define voice_to_text() to convert your voice
command to text 1. We also define open_file() to identify your operating
system and use the proper command, explorer, open, or xdg-open, to open the

68 Chapter 3

file on your computer. Note that while the Windows operating system uses a
backward slash (\) to go to a subfolder, Mac and Linux use a forward slash (/)
for that purpose.

The script is then put in standby mode by using a while loop 2. Within
the loop, the microphone first detects your voice and converts it into text.
Since we put the lower() method after voice_to_text(), all letters in the vari-
able inp will be lowercase to avoid mismatch due to capitalization.

N O T E The lower() method will not affect the opening of files later in the script because
the command in the os.system() method is not case-sensitive. For example, the file
presentation.mp3 will still open even if you use the filename Presentation.MP3.

If you say, “Stop listening,” the script prints Goodbye! and stops running.
If the words open pdf are in your voice command, the first elif branch is
activated. The script then replaces open pdf with an empty string so only the
filename is left in inp. The script goes to the subfolder and opens the proper
PDF file. For example, when you say, “Open PDF desk,” the file desk.pdf will
open on your computer.

When you say, “Open Word lessons,” the second elif branch is activated.
The same principle works for Excel files and PowerPoint files. And when you
say, “Open audio presentation,” the audio file presentation.mp3 will start play-
ing on your computer, using the default MP3 player.

Here is the output from my interaction:

Python is listening...
You just said open pdf desk.
Python is listening...
You just said open word lessons.
Python is listening...
You just said
Python is listening...
You just said open excel book.
Python is listening...
You just said open powerpoint graduation.
Python is listening...
You just said open audio presentation.
Python is listening...
You just said stop listening.
Goodbye!

T RY IT OU T

Save a comma-separated values (CSV) file as payments.csv and an MP4 file
as recording.mp4 in the subfolder files in your chapter folder. Then add two
additional elif branches in voice_open_file.py so that your computer will open
the CSV file when you say, “Open data payments,” and will open the MP4 file
when you say, “Open video recording.”

Speech Recognition 69

 Create and Import a Local Module
As you have probably noticed, the three scripts voice_browse.py, voice_search.py,
and voice_open_file.py share a large chunk of the same code: the code to import
the speech recognition module and define the voice_to_text() function.

To make our scripts more efficient, we’ll put all command lines related
to speech recognition in a local module. We can then import the module in
any script that uses the speech recognition feature.

Create the Local Module mysr
Enter Listing 3-6 in your Spyder editor and save it as mysr.py. Alternatively,
you can download it from the book’s resources page.

Get rid of ALSA lib error messages in Linux
1 import platform
import speech_recognition as sr

if platform.system() == "Linux":
 from ctypes import CFUNCTYPE, c_char_p, c_int, cdll

 # Define error handler
 error_handler = CFUNCTYPE\
 (None, c_char_p, c_int, c_char_p, c_int, c_char_p)
 # Don't do anything if there is an error message
 2 def py_error_handler(filename, line, function, err, fmt):
 pass
 # Pass to C
 c_error_handler = error_handler(py_error_handler)
 asound = cdll.LoadLibrary('libasound.so')
 asound.snd_lib_error_set_handler(c_error_handler)

Now define the voice_to_text() function for all platforms
3 import speech_recognition as sr

def voice_to_text():
 voice_input = ""
 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 audio = speech.listen(source)
 voice_input = speech.recognize_google(audio)
 except sr.UnknownValueError:
 pass
 except sr.RequestError:
 pass
 except sr.WaitTimeoutError:
 pass
 return voice_input

Listing 3-6: Code for the self-made module mysr

70 Chapter 3

You can ignore the first part of the code 1 if you aren’t using Linux.
The Advanced Linux Sound Architecture (ALSA) configuration, which is
coded in the C programming language, spits out warning messages like
these every time the pyaudio module is imported:

ALSA lib pcm.c:2212:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.rear
ALSA lib pcm.c:2212:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.center_lfe
ALSA lib pcm.c:2212:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.side
ALSA lib audio/pcm_bluetooth.c:1613:(audioservice_expect)
BT_GET_CAPABILITIES failed : Input/output error(5)
ALSA lib audio/pcm_bluetooth.c:1613:(audioservice_expect)
BT_GET_CAPABILITIES failed : Input/output error(5)
ALSA lib audio/pcm_bluetooth.c:1613:(audioservice_expect)
BT_GET_CAPABILITIES failed : Input/output error(5)
ALSA lib audio/pcm_bluetooth.c:1613:(audioservice_expect)
BT_GET_CAPABILITIES failed : Input/output error(5)
ALSA lib pcm_dmix.c:957:(snd_pcm_dmix_open)
The dmix plugin supports only playback stream
ALSA lib pcm_dmix.c:1018:(snd_pcm_dmix_open) unable to open slave

We create an error handler in Python 2 and pass it to C so that you won’t
see any error messages when you import pyaudio. The details are beyond the
scope of this book, so it’s okay if you don’t understand this part. Just leave the
error handler in the module mysr, and it won’t affect your understanding for
the rest of the book.

Starting at 3, we import the SpeechRecognition module, initiate the
Recognizer() class, and define the voice_to_text() function.

Note that if you run mysr.py, nothing will happen. This is because we
just define voice_to_text() in this script and don’t call it.

Import mysr
Let’s revisit stand_by.py and modify it to use mysr. Save Listing 3-7 as stand_by1.py.

Make sure you put mysr.py in the same folder as this script
from mysr import voice_to_text

while True:
 print('Python is listening...')
 1 inp = voice_to_text()
 print(f'You just said {inp}.')
 if inp == "stop listening":
 print('Goodbye!')
 break

Listing 3-7: Code for stand_by1.py

We’ve replaced all speech recognition–related code with just one line:
from mysr import voice_to_text. This line tells the script to go to the local
module mysr and import voice_to_text() to be used in the current script.

Whenever you need to convert speech to text, you simply call
voice_to_text() 1.

Speech Recognition 71

T RY IT OU T

Run stand_by1.py and say two simple phrases as you did in the “Try It Out”
exercise on page 61 and see if you get the same results. After that, say, “Stop
listening” to end the script.

 Summary
In this chapter, we installed the SpeechRecognition module and used try
and except to handle potential errors. In this way, we prevent the script
from closing when we would rather it continue. We tested the voice control
functionality with a few projects: voice-controlled web surfing and voice-
controlled web search.

You learned how to use the os module to open files and the pathlib mod-
ule to navigate through the file path, as well as the platform module to make
your Python code cross-platform.

Finally, you put all code related to speech recognition into a self-made
local module so that your scripts look concise, short, and clean. We’ll use
this module throughout the rest of the book.

 End-of-Chapter Exercises

1. Modify stand_by.py so that you end the while loop by saying, “Quit the
script” instead of “Stop listening,” and when the while loop ends, the
script prints Have a great day!

2. Modify voice_open_file.py so that when you say, “Open text filename,”
filename.txt will open on your computer.

3. Modify voice_open_file.py so that it imports voice_to_text() from the local
mysr module.

4
M A K E P Y T H O N T A L K

In this chapter, you’ll learn how to make
Python talk back to you in a human voice.

You’ll first install the text-to-speech mod-
ule based on your operating system and then

teach Python to speak aloud whatever you enter on
your computer. You’ll also add the speech recognition
feature you learned in Chapter 2 and get Python to
repeat your own speech. Finally, you’ll build a real-
world application to use voice inputs to ask Python
to calculate the area of a rectangle and tell you the
answer in a human voice.

To save space, you’ll put all text-to-speech-related code in a self-made
module. Once you do that, you can import the module into any script that
needs the text-to-speech feature.

74 Chapter 4

You’ll also learn how to ask Python to read a long text file, such as a
news article, aloud. Before you begin, set up the folder /mpt/ch04/ for this
chapter. As in previous chapters, you can download the code for all the
scripts from https://www.nostarch.com/make-python-talk/.

NE W SKIL L S

• Installing speech-related modules depending on your operating system

• Adjusting properties of your text-to-speech module

• Creating a module that is portable cross-platform

• Combining the text-to-speech module with speech recognition so a com-
puter can repeat what you said

• Making the computer solve a problem and answer you in a human voice

 Install the Text-to-Speech Module
Python has two commonly used text-to-speech modules: pyttsx3 and gTTS.
If you use Windows, you’ll install pyttsx3 and use it throughout the book.
In the Windows operating system, the pyttsx3 module works offline, has a
human-like voice, and lets you adjust the speech properties—namely, the
speed, volume, and gender of the voice output.

However, the pyttsx3 module works differently in Mac and Linux. The
voice sounds robotic, and the speech properties are not easily adjustable.
Therefore, you’ll install gTTS if you use Mac or Linux. The gTTS module
requires an internet connection since it uses the Google Translate text-
to-speech API. Further, gTTS does not play the sound directly. It saves the
voice as an audio file or file-like object. You’ll have to use your own audio
player to hear the voice. The voice generated by gTTS is very human-like.

In Chapter 2, you built a virtual environment called chatting, which you
then used for speech recognition in Chapter 3. You’ll install the pyttsx3 or
gTTS module in the same virtual environment so your script will have both
the speech recognition and text-to-speech features.

Setup
If you are using Windows, go to the “Install pyttsx3 in Windows” section and
skip the “Install gTTS in Mac or Linux” section. Otherwise, skip the “Install
pyttsx3 in Windows” section and go to the “Install gTTS in Mac or Linux”
section.

Install pyttsx3 in Windows

The pyttsx3 module is not in the Python standard library, so you’ll need to
install it via pip.

https://www.nostarch.com/make-python-talk/

Make Python Talk 75

If you haven’t already set up your chatting virtual environment, go back
to Chapter 2 now and follow the instructions to do so. Then activate the
virtual environment chatting in the Anaconda prompt by executing the
following:

conda activate chatting

With your chatting virtual environment activated, enter this:

pip install pyttsx3

Follow the instructions onscreen to finish the installation.

Install gTTS in Mac or Linux

The gTTS module is not in the Python standard library, so you’ll need to
install it via pip.

If you haven’t already set up your chatting virtual environment, go back
to Chapter 2 now and follow the instructions to do so. Then activate the vir-
tual environment chatting in a terminal by executing the following:

conda activate chatting

With your chatting virtual environment activated in your terminal, enter
this command:

pip install gTTs

Follow the instructions onscreen to finish the installation.

Test Your Text-to-Speech Module
Before beginning, you’ll check that your text-to-speech module is properly
installed and working. Based on your operating system, skip the sections
that don’t apply to you.

Run a Sample Script in Windows

With your virtual environment activated and Spyder open, copy the script
test_pyttsx3.py into your editor and save it in your chapter folder. If you pre-
fer, you can download the file from the book’s resources through https://
www.nostarch.com/make-python-talk/.

import pyttsx3
engine = pyttsx3.init()
engine.say("hello, how are you?")
engine.runAndWait()

First, import the pyttsx3 module to the script. Then use init() to initi-
ate a text-to-speech engine in the pyttsx3 module and call it engine. The
say() function in the pyttsx3 module converts the text to a speech signal and

https://www.nostarch.com/makepythontalk/.
https://www.nostarch.com/makepythontalk/.

76 Chapter 4

prepares to send it to the speaker. The runAndWait() function then sends
the actual speech signal to the speaker so you can hear the sound. The
runAndWait() function also keeps the engine running so that when you want
to convert text to speech later in the script, you don’t need to initiate the
engine again.

To understand how each line of code functions, run test_pyttsx3.py line
by line by using the F9 key.

N O T E The say() function in the pyttsx3 module only converts the text to a speech signal
and prepares to send it to the speaker. It does not do the actual speaking. To hear the
sound, use runAndWait(), which sends the speech signal to the speaker.

If the module is correctly installed, when you finish running the whole
script, you should hear a voice saying, “Hello, how are you?” If not, recheck
the instructions and make sure that the speaker on your computer is work-
ing properly at the right volume. I’ll discuss later in this chapter how to
customize the speed, volume, and voice gender associated with the pyttsx3
module.

Run a Sample Script in Mac or Linux

You’ll use the gtts-cli tool (cli stands for command line) to convert text to
speech, instead of converting text to an audio file, and then play it. The
gtts-cli tool is faster than the alternative method. Once you install the gTTS
module, the gtts-cli tool is available in the command line in your virtual
environment. The gtts-cli tool converts the text to a file-like object, and you
have to choose which audio player to play it. I find that the mpg123 player
works well.

First, you need to install the mpg123 player on your computer. If you
are using Mac, run the following command in a terminal:

brew install mpg123

If you are using Linux, run the following two commands on a terminal:

sudo apt-get update
sudo apt-get install mpg123

Once you’re finished, with your virtual environment activated, run the
following command in a terminal:

gtts-cli --nocheck "hello, how are you?" | mpg123 -q -

If you have correctly installed everything, you should hear a voice saying,
“Hello, how are you?” If not, recheck the instructions and make sure that the
speaker on your computer is working properly at the right volume. Further,
since you have installed the gTTS module in your virtual environment, you
have to run the preceding command with your virtual environment acti-
vated. Otherwise, it won’t work.

Make Python Talk 77

The nocheck option in this command is to speed up execution. The q
flag instructs the module not to display copyright and version messages,
even in an interactive mode. Make sure you don’t miss the hyphen at the
end of the command.

Next, you’ll use the os module in Python to execute commands in a
subshell.

Copy the test_gtts.py script into your Spyder editor and save it in your
chapter folder. The script is also available at the book’s resources through
https://www.nostarch.com/make-python-talk/.

import os

os.system('gtts-cli --nocheck "hello, how are you?" | mpg123 -q -')

First import the os module to the script. Then use system() to execute a
command in a subshell to achieve the same effect as running the command
in a terminal. As a result, the gtts-cli tool is used to convert text to a file-like
object. After that, the mpg123 player plays the sound object so you can hear
a human voice.

N O T E You don’t need to explicitly import the gTTS module in test_gtts.py because you use
the gtts-cli tool in the command line, even though the gTTS module is used.

If you’ve done everything correctly, you should hear a voice saying,
“Hello, how are you?”

Convert Text to Voice in Windows

Now let’s practice converting written text input into a human voice in
Windows. With your virtual environment activated and Spyder open, copy
the script tts_windows.py, as shown in Listing 4-1, into your editor and save
and run it.

import pyttsx3

engine = pyttsx3.init()
1 while True:
 inp = input("What do you want to covert to speech?\n")
 if inp == "done":
 print(f"You just typed in {inp}; goodbye!")
 engine.say(f"You just typed in {inp}; goodbye!")
 engine.runAndWait()
 break
 2 else:
 print(f"You just typed in {inp}")
 engine.say(f"You just typed in {inp}")
 engine.runAndWait()
 continue

Listing 4-1: Converting text to voice in Windows

https://www.nostarch.com/make-python-talk/

78 Chapter 4

After importing the pyttsx3 module and initiating a text-to-speech
engine, start an infinite loop to take user text input 1. In each iteration,
the script asks for text input at the IPython console. If you want to stop the
script, enter done, and the script will print and say in a human voice, “You
just typed in done; goodbye!” After that, the loop stops, and the script quits
running.

If the text input is not done, the else branch runs 2, and the script speaks
your text input out loud in a human voice. After that, the script goes to the
next iteration and takes your text input again.

The following is sample output from the script (user input is in bold):

What do you want to covert to speech?
Python is great!
You just typed in Python is great!

What do you want to covert to speech?
Hello, world!
You just typed in Hello, world!

What do you want to covert to speech?
done
You just typed in done; goodbye!

Convert Text to Voice in Mac or Linux

Now we’ll practice converting written text input into a human voice in Mac
or Linux. With your virtual environment activated and Spyder open, copy
the script tts_mac_linux.py (Listing 4-2) into your editor, and save and run it.

import os

while True: 1
 inp = input("What do you want to covert to speech?\n")
 if inp == "done":
 print(f"You just typed in {inp}; goodbye!")
 os.system(f'gtts-cli --nocheck "You just typed in {inp}; goodbye!" | mpg123 -q -')
 break
 else: 2
 print(f"You just typed in {inp}")
 os.system(f'gtts-cli --nocheck "You just typed in {inp}" | mpg123 -q -')
 continue

Listing 4-2: Converting text to voice in Mac and Linux

After importing the os module so you can run commands in a subshell,
start an infinite loop to take user text input 1. In each iteration, the script
asks for text input at the IPython console. If you want to stop the script,
enter done, and the script will print and say in a human voice, “You just
typed in done; goodbye!” After that, the loop stops, and the script quits
running.

Make Python Talk 79

If the text input is not done, the else branch runs 2, and the script speaks
your text input out loud in a human voice. After that, the script goes to the
next iteration and takes your text input again.

The following is sample output from the script (user input is in bold):

What do you want to covert to speech?
Python is great!
You just typed in Python is great!

What do you want to covert to speech?
Hello, world!
You just typed in Hello, world!

What do you want to covert to speech?
done
You just typed in done; goodbye!

 Repeat After Me
We’ll start with a simple script that hears what you say aloud and repeats it
in a human voice. This script serves two purposes. First, you’ll learn how the
script takes your voice inputs and which words are easiest for the script to
understand—some uncommon words won’t be understood. Second, you’ll
learn how to put both the speech recognition and text-to-speech features in
the same script so you can communicate with the computer through human
voices only.

We’ll also make the script portable cross-platform. The script will auto-
matically choose the pyttsx3 module if you are using Windows and the gTTS
module otherwise.

Start a new script, name it repeat_me.py, and enter the code in Listing 4-3.
Make sure to save it in your chapter folder. You’ll also need to copy your
mysr.py file from Chapter 3 and paste it into the same folder, as you’ll need
voice_to_text() from that script.

Make sure you put mysr.py in the same folder as this script
from mysr import voice_to_text

import platform 1
if platform.system() == "Windows":
 import pyttsx3
 engine = pyttsx3.init()
else:
 import os

while True:
 print('Python is listening...')
 inp = voice_to_text() 2
 if inp == "stop listening":
 print(f'You just said {inp}; goodbye!')
 if platform.system() == "Windows":

80 Chapter 4

 engine.say(f'You just said {inp}; goodbye!')
 engine.runAndWait()
 else:
 os.system(f'gtts-cli --nocheck "You just said {inp}; goodbye!" | mpg123 -q -')
 break

 else:
 print(f'You just said {inp}')
 if platform.system() == "Windows": 3
 engine.say(f'You just said {inp}')
 engine.runAndWait()
 else:
 os.system(f'gtts-cli --nocheck "You just said {inp}" | mpg123 -q -')
 continue

Listing 4-3: Repeating aloud

W A R N I N G Remember to put mysr.py in the same folder as Listing 4-3. Otherwise, the speech
recognition feature won’t work! Yes, I’ve said this before, but it’s important enough to
bear repeating.

First, import the voice_to_text() function from the mysr module to
convert voice commands into a string variable. Then, import the platform
module, which lets the script automatically identify your operating system
and choose the appropriate command for you 1. If you are using Windows,
the script imports the pyttsx3 module and initiates a text-to-speech engine.
Otherwise, the script imports the os module so you can use the gtts-cli tool
in a subshell.

You then start an infinite loop to take voice inputs. The script takes your
voice command and converts it into a string variable called inp 2. If you say,
“Stop listening” into the microphone, the script will say aloud, “You just said
stop listening; goodbye!” After that, the script stops. The script uses either
the pyttsx3 module or the gtts-cli tool, depending on your operating system.

If you say anything else into the microphone, the loop will keep run-
ning. At each iteration, the script will repeat what you said out loud 3.

The following is the output from the script after I said, “Hello,” “How
are you,” and “Stop listening” into the microphone sequentially:

Python is listening...
You just said hello
Python is listening...
You just said how are you
Python is listening...
You just said stop listening; goodbye!

N O T E If you pause often while the script stands by, the script may say, “You just said” in a
human voice again and again when you are not speaking. To avoid that, you can
modify repeat_me.py by removing the You just said part (3 in Listing 4-3).

Make Python Talk 81

 Customize the Speech
In this section, you’ll learn how to customize the speech produced by your
text-to-speech module. You can adjust the speed and volume of the speech
as well as the identity of the voice in the pyttsx3 module in Windows. If you
are using Mac or Linux, the only thing you can customize is the speed of
the voice in the gTTS module.

Skip any of the following subsections that don’t apply to your operating
system.

Retrieve Default Settings in the pyttsx3 Module in Windows
First, you need to see the default values of the parameters for the speed,
volume, and identity of the voice in the pyttsx3 module in Windows.

This script will retrieve the default settings for your speech module. In
Spyder, enter the code in Listing 4-4 and save it as pyttsx3_property.py in the
chapter folder.

import pyttsx3

engine = pyttsx3.init()
1 voices = engine.getProperty('voices')
for voice in voices:
 print(voice)
2 rate = engine.getProperty("rate")
print("the default speed of the speech is", rate)
vol = engine.getProperty("volume")
print("the default volume of the speech is", vol)

Listing 4-4: Retrieving the default settings

At 1, you use getProperty() to obtain the properties of the voices used
in the engine. You then iterate through all the voice objects in the list voices
and print out individual voice objects.

You use getProperty() 2 to obtain the properties of the speed and print
the default speed, then do the same for the default volume.

If you run this script in Windows, you’ll see the default settings for your
speech script, similar to the following output:

<Voice id=HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_DAVID_11.0
 name=Microsoft David Desktop - English (United States)
 languages=[]
 gender=None
 age=None>
<Voice id=HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0
 name=Microsoft Zira Desktop - English (United States)
 languages=[]
 gender=None
 age=None>
the default speed of the speech is 200
the default volume of the speech is 1.0

82 Chapter 4

Here you can see the two voices available to the pyttsx3 module. The
first voice, named David, has a male voice tone; the second voice, named
Zira, has a female voice tone. The default voice tone is David—hence the
male voice you hear in test_pyttsx3.py.

The default speech speed is 200 words per minute. The default volume
is set at 1. You’ll learn how to adjust the speed, volume, and ID in the pyttsx3
module in Windows next.

Adjust Speech Properties in the pyttsx3 Module in Windows
This script will change the default settings so you can hear a voice with the
speed, volume, and ID that you prefer. Save Listing 4-5 as pyttsx3_adjust.py.

import pyttsx3
engine = pyttsx3.init()
voice_id = 1
1 voices = engine.getProperty('voices')
engine.setProperty('voice', voices[voice_id].id)
engine.setProperty('rate', 150)
engine.setProperty('volume', 1.2)
engine.say("This is a test of my speech id, speed, and volume.")
engine.runAndWait()

Listing 4-5: Adjusting some settings

Choose the second voice ID, which has a female voice. At 1, the script
obtains the voice objects available in the text-to-speech engine and saves
them in a list called voices. Choose the second object in the list voices,
which has a female voice tone, by giving the index [1]. The setProperty()
function takes two arguments: the property to set and the value to set it
to. Set the value to voices[voice_id].id to choose the id value of the female
voice object in Windows, which is HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0. If you want to
change to the male voice in Windows, you can use voices[0].id instead.

Next, you set the speech speed to 150 words per minute. Most of us speak
at a rate of about 125 words per minute in everyday conversation. For faster
speech, set rate to a number greater than 125, and for slower speech, set it to
a number below 125.

Then, the volume is set to 1.2, which is louder than the default value
of 1. You can set this to higher or lower than 1 based on your preference
and speakers.

Finally, the script converts the text in say() into speech by using the
adjusted properties. Try running this script multiple times with different
combinations of parameters until you find the best combination for you.
You can always come back to this script and make adjustments.

Customize the gTTS Module in Mac or Linux
You can customize the speed, but not the volume or ID, of the voice in gTTS,
according to the gTTS documentation; see, for example, https://buildmedia
.readthedocs.org/media/pdf/gtts/latest/gtts.pdf. However, gTTS can convert text to

https://buildmedia.readthedocs.org/media/pdf/gtts/latest/gtts.pdf
https://buildmedia.readthedocs.org/media/pdf/gtts/latest/gtts.pdf

Make Python Talk 83

speech in most major world languages including Spanish, French, German,
and so on, which the pyttsx3 module can’t do. You’ll use this feature of gTTS
to build a voice translator in Chapter 16.

This script will change the default speed to slow for the gTTS module.
In Spyder, enter the following code and save it as gtts_slow.py in the chapter
folder:

import os

os.system('gtts-cli --nocheck --slow "hello, how are you?" | mpg123 -q -')

The script is the same as test_gtts.py you’ve created before except that it
adds the --slow option. This changes the voice output to slower than normal.

If you run this script in Mac or Linux, you’ll hear the computer saying,
“Hello, how are you?” slowly.

Since the default setting for the speed is slow=False, and that’s what we
prefer, we won’t customize the gTTS module.

 Build the Local mysay Module
In Chapter 3, you put all commands related to speech recognition in a local
module named mysr. You’ll do the same here and put all text-to-speech-
related commands in a local module.

Create mysay
You’ll create a local module mysay and save it in the same folder as any script
that uses the text-to-speech feature. That way, you can save space in the main
script. This module has adjusted the properties for speed, volume, and gen-
der of the speech set in pyttsx3_adjust.py if you are using Windows. If you are
using Mac or Linux, the local module mysay will use the default properties
in the gTTS module. You can modify these parameters based on your own
preferences.

Enter the code in Listing 4-6 and save it as mysay.py in your chapter folder.

Import the platform module to identify your OS
import platform

If you are using Windows, use pyttsx3 for text to speech
1 if platform.system() == "Windows":
 import pyttsx3
 2 try:
 engine = pyttsx3.init()
 except ImportError:
 pass
 except RuntimeError:
 pass
 voices = engine.getProperty('voices')
 engine.setProperty('voice', voices[1].id)
 engine.setProperty('rate', 150)
 engine.setProperty('volume', 1.2)

84 Chapter 4

 def print_say(txt):
 print(txt)
 engine.say(txt)
 engine.runAndWait()

If you are using Mac or Linux, use gtts for text to speech
3 if platform.system() == "Darwin" or platform.system() == "Linux":
 import os

 def print_say(texts):
 print(texts)
 texts = texts.replace('"','')
 texts = texts.replace("'","")
 os.system(f'gtts-cli --nocheck "{texts}" | mpg123 -q -')

Listing 4-6: Building the module

You first import the platform module to identify your operating sys-
tem. If you are using Windows 1, the pyttsx3 module is imported. You
use exception handling when initiating the text-to-speech engine 2 so
that if you get an ImportError or RuntimeError, the script will keep running
rather than crash. You then define print_say(), which prints the text and
converts text to speech.

If you are using Mac or Linux 3, the os module is imported to use the
gtts-cli tool to run the command in a subshell. You then define a different
print_say() function that prints the text and converts text to speech.

N O T E If you are using Windows, the module mysay has adjusted the properties of the speed,
volume, and gender of the speech. You can modify these parameters based on your
own preferences.

Import mysay
With mysay prepared, you can simply import the module to your script to
use the text-to-speech features. Let’s revisit the script repeat_me.py and mod-
ify it to use the mysay module. Save the following as repeat_me1.py:

Put mysr.py and mysay.py in the same folder as this script
from mysr import voice_to_text
from mysay import print_say

while True:
 print('Python is listening...')
 inp = voice_to_text()
 if inp == "stop listening":
 print_say(f'You just said {inp}; goodbye!')
 break
 else:
 print_say(f'You just said {inp}')
 continue

Make Python Talk 85

You first import print_say() from mysay. You also import voice_to_text()
from the mysr module created in Chapter 3. You use voice_to_text() to con-
vert your voice command into a variable inp. When you want to covert text
to speech, you use print_say().

Run the script and speak into the microphone to test it out. I said, “Hello
again,” “This one is using a text-to-speech module,” and “Stop listening,” to
the script in that order. Here is the output:

Python is listening...
You just said hello again
Python is listening...
You just said this one is using a text-to-speech module
Python is listening...
You just said stop listening; goodbye!

T RY IT YOURSEL F

Run repeat_me1.py and say three phrases into the microphone so that Python
repeats after you, phrase by phrase. When it is finished, use the voice com-
mand “I am done” to exit the script (you need to modify the script slightly).

 Build a Voice-Controlled Calculator
You’ll use your text-to-voice and speech-parsing skills to build a calculator
that you can speak commands to. The calculator finds the area of a rect-
angle and tells you the area in a human voice.

This script takes from you the width and length of a rectangle and
speaks back its area. Save Listing 4-7 as area_hs.py in your chapter folder.

Put mysr.py and mysay.py in the same folder as this script
from mysr import voice_to_text
from mysay import print_say

Ask the length of the rectangle
1 print_say('What is the length of the rectangle?')
Convert the voice input to a variable inp1
inp1 = voice_to_text()
print_say(f'You just said {inp1}.')
Ask the width of the rectangle
print_say('What is the width of the rectangle?')
Save the answer as inp2
inp2 = voice_to_text()
print_say(f'You just said {inp2}.')
Calculate the area
2 area = float(inp1)*float(inp2)
Print and speak the result
print_say(f'The area of the rectangle is {area}.')

Listing 4-7: Calculating the area of a rectangle

86 Chapter 4

You first import the text-to-speech and speech recognition functions
from local modules. The script asks you about the length of the rectangle 1.
Speak a number into the microphone, and the script converts your voice
input into text and saves it as the variable inp1. The script then asks you for
the width of the rectangle. When you speak your answer, the script saves
your voice input in the variable inp2.

Based on your inputs, the script calculates the area of the rectangle 2
by converting your voice inputs into float variables and multiplying them.

The script will speak the result aloud as well as print the interactions to
the screen. Here is one interaction with the script:

What is the length of the rectangle?
You just said 5.
What is the width of the rectangle?
You just said 3.
The area of the rectangle is 15.0.

Once I told the script that the length of the rectangle was 5 and the
width was 3, the script told me that the area was 15.0.

If you say something that isn’t a number, the script will not work. It’s saf-
est to include the decimal in your response (for example, “five point zero”)
so the script doesn’t accidentally convert your response into a string rather
than a number type.

T RY IT YOURSEL F

Run area_hs.py to determine the area of a rectangle that has a length of 5.3
and width of 1.6.

 Read a File Aloud
In this section, you’ll learn how to read a file into a script so Python can
speak the text aloud.

Listing 4-8 contains the short news article you’ll use.

Storm Dorian likely to strengthen into hurricane

Thomson Reuters
BY BRENDAN O'BRIEN Aug 25th 2019 3:49PM

Tropical Storm Dorian was likely to strengthen into a hurricane during the
next two days as it churned westward in the Caribbean Sea, putting Puerto
Rico, the Lesser Antilles and the Virgin Islands on alert, forecasters said on
Sunday.

Make Python Talk 87

The storm, 465 miles (750 km) east-southeast of Barbados, packed 40 mph winds
as it headed west at 14 mph. It was forecast to be near the central Lesser
Antilles late on Monday or early Tuesday, the National Hurricane Center (NHC)
said in a midday advisory on Sunday.

"Right now, it's a tropical storm and we are expecting it to strengthen close
to or reaching hurricane intensity as it approaches," NHC meteorologist
Michael Brennan told Reuters.

Dorian was expected to turn toward the west-northwest on Monday and continue
on that path through Tuesday night, the NHC said.

As of Sunday afternoon, Barbados was under a tropical storm warning while
a tropical storm watch was in effect for St. Lucia and St. Vincent and the
Grenadines.

The NHC was likely to issue additional watches for portions of the Windward
and Leeward Islands on Sunday, Brennan said, noting that Puerto Rico, the
Virgin Islands and Hispaniola should monitor Dorian's progress.

"We are approaching the peak of the hurricane season so everybody in the
Caribbean and along the U.S. South, Gulf and East Coast needs to be aware and
follow these systems," Brennan said. Dorian's winds could weaken as it passes
south of Puerto Rico and approaches Hispaniola. Many Caribbean islands are
likely to receive 2 to 4 inches (5 to 10 cm) of rain, but some part of the
Lesser Antilles islands could get 6 inches, the NHC said.

Listing 4-8: Content for the text file

Including this article as is in a script would clearly be inconvenient, so
save it as a text file named storm.txt (you can download storm.txt with the rest
of the book’s resources). You can first create a subfolder called files in your
chapter folder and then save storm.txt in the subfolder.

Save Listing 4-9 as newsfile.py to have Python read the news article out loud.

Put mysay.py in the same folder as this script
from mysay import print_say
import pathlib

Open the file, and read the content of the text file
1 myfile = pathlib.Path.cwd() / 'files' / 'storm.txt'
with open(myfile,'r') as f:
 content = f.read()

Let Python speak the text in the file
print_say(content)

Listing 4-9: Reading out the text file

You first let the script know where to find the news file 1. You use open()
to access storm.txt from the subfolder files. You then read the content of the file
into a string variable called content by using read(). At the end, the script reads
the file content out loud in a human voice. Simple!

88 Chapter 4

If you save storm.txt in the same folder as the preceding script, you don’t
need to specify the file path. Python will automatically look in the folder
the script is held in when a path is not specified.

T RY IT YOURSEL F

Select an online news article and save it as mynews.txt on your computer. Modify
newsfile.py so that the script reads the news article out loud in a human voice.

 Summary
In this chapter, you learned how to install the text-to-speech module to make
Python talk. You moved crucial text-to-speech features into the module mysay
to import into scripts.

You have also learned how to have Python repeat what you say. You
applied your new skills to a real-world application: using voice inputs to
ask Python to calculate the area of a rectangle and tell you the answer in
a human voice.

Now that you know how to make Python talk and listen, in Chapter 5
you’ll learn how to apply both features to several interesting real-world
applications.

 End-of-Chapter Exercises

1. If you are using Windows, in pyttsx3_adjust.py, modify the code as
follows:

A. The voice is a male voice.

B. The speed of the speech is 160 words per minute.

C. The volume is 0.8.

2. Modify the script area_hs.py to calculate the area of a triangle when you
say the triangle’s height and base length.

5
S P E A K I N G A P P L I C A T I O N S

Now that you know how to make Python
talk and listen, we’ll create several real-world

applications that utilize those skills. But before
that, you’ll create a local package. Since you’ll

use the mysr and mysay local modules in every chapter
for the reminder of the book, you’ll create a Python
package to contain all local modules. This way, you don’t
need to copy and paste these modules to the folders of
individual chapters. This also helps keep the code con-
sistent throughout the book. You’ll learn how a Python
package works and how to create one yourself along
the way.

In the first application, you’ll build a Guess the Number game that
takes voice commands and talks back to you in a human voice.

90 Chapter 5

You’ll then learn how to parse text to extract news summaries from
National Public Radio (NPR) and have Python read them out to you. You’ll
also build a script to extract information from Wikipedia based on your
voice inquiries and to speak the answers out.

Finally, you’ll learn how to traverse files in a folder with your voice, with
the aim of building your very own Alexa. You’ll be able to say to the script,
“Python, play Selena Gomez,” and a song by Selena Gomez that’s saved on
your computer will start playing.

As usual, you can download all the code for all the scripts from https://
www.nostarch.com/make-python-talk/. Before you begin, set up the folder
/mpt/ch05/ for this chapter.

NE W SKIL L S

• Learning how Python packages work

• Creating your self-made local Python package

• Parsing the source code of a news website to extract news summaries

• Extracting answers to your queries from Wikipedia and converting them to
voice

• Traversing files in a folder on your computer by using the os module

 Create Your Self-Made Local Python Package
In Chapter 3, you built a self-made local module mysr to contain all speech
recognition–related code. Whenever you need to use the speech-recognition
feature, you import voice_to_text() from the module. Similarly, you built
a self-made local module mysay in Chapter 4 to contain all text-to-speech-
related code. You import print_say() from the module whenever you use
the text-to-speech feature.

You’ll use these two self-made local modules in this chapter and other
chapters in this book. To make these modules work, you need to put the mod-
ule files (namely, mysr.py and mysay.py) in the same directory as the script that
uses these two modules. This means you’d potentially have to copy and paste
these files into the directory of almost every chapter in this book. You may
wonder: is there a more efficient way to do this?

The answer is yes, and that’s what Python packages are for.
Next, you’ll first learn what a Python package is and how it works. You’ll

then learn how to create your self-made local package. Finally, you’ll use a
Python script to test and import your package.

What’s a Python Package?
Many people think that Python modules and Python packages are the
same. They’re not.

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

Speaking Applications 91

A Python module is a single file with the .py extension. In contrast, a
Python package is a collection of Python modules contained in a single
directory. The directory must have a file named __init__.py to distinguish
it from a directory that happens to have .py extension files in it.

I’ll guide you through the process of creating a local package
step-by-step.

Create Your Own Python Package
To create a local Python package, you need to create a separate directory
for it and place all related files into it. In this section, you’ll create a local
package to contain both our speech recognition and text-to-speech module
files—namely, mysr.py and mysay.py.

Create a Package Directory

First, you need to create a directory for the package.
In this book, you use a separate directory for each chapter. For example,

all Python scripts and related files in this chapter are placed in the directory
/mpt/ch05/. Since you are creating a package to be used for all chapters in
this book, you’ll create a directory parallel to all chapters. Specifically, you’ll
use the directory /mpt/mptpkg/, where mptpkg is the package name. The dia-
gram in Figure 5-1 explains the position of the package relative to the book
chapters.

.
appendixch05ch01

mpt

mptpkg

Figure 5-1: The position of the mptpkg package relative to the chapter folders

As you can see, the package directory is parallel to the chapter directo-
ries, which are all contained in the directory for the book, /mpt, as in Make
Python Talk.

Create Necessary Files for Your Package

Next, you need to create and place necessary files in the package.
First, copy and paste the two modules you created in Chapters 3 and 4,

mysr.py and mysay.py, in the package directory /mpt/mptpkg/. Do not make
any changes to the two files.

Then save the following script, __init__.py, in the package directory /mpt/
mptpkg/ (or you can download it from the book’s resources):

from .mysr import voice_to_text
from .mysay import print_say

92 Chapter 5

The purpose of this file is twofold: it imports voice_to_text() and
print_say() so you can use those functions at the package level, and it also
tells Python that the directory is a package, not a folder that happens to
have Python scripts in it.

Finally, save the following script, setup.py, in the book directory /mpt,
one level above the package directory /mpt/mptpkg/. The script is also avail-
able from the book’s resources.

from setuptools import setup
setup(name='mptpkg',
version='0.1',
description='Install local package for Make Python Talk',
author='Mark Liu',
author_email='mark.liu@uky.edu',
packages=['mptpkg'],
zip_safe=False)

The file provides information about the package, such as the package
name, author, version, descriptions, and so on.

You’ll learn how to install this local package on your computer next.

Install Your Package

Because you’ll modify the local package and add more features to it later in
the book, it’s better to install the package in editable mode.

Open your Anaconda prompt (Windows) or a terminal (Mac or Linux)
and activate your virtual environment for this book, chatting. Run the fol-
lowing command:

pip install -e path-to-mpt

Replace path-to-mpt with the actual directory path of /mpt. For example,
the book directory /mpt is C:\mpt on my office computer that runs the Windows
operating system, so I installed the local package using this command:

pip install -e C:\mpt

On my Linux machine, the path to the /mpt directory is /home/mark/
Desktop/mpt, so I installed the local package using this command:

pip install -e /home/mark/Desktop/mpt

The -e option tells the Python to install the package in editable mode
so that you can modify the package anytime you need to.

With that, the local package is installed on your computer.

Test Your Package
Now that you have installed your self-made local package, you’ll learn how
to import it.

You’ll write a Python script to test the package you just created.

Speaking Applications 93

Let’s revisit the script repeat_me1.py from Chapter 4. Enter the follow-
ing lines of code in your Spyder editor and save it as repeat_me2.py in your
Chapter 5 directory /mpt/ch05/:

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

while True:
 print('Python is listening...')
 inp = voice_to_text()
 if inp == "stop listening":
 print_say(f'you just said {inp}; goodbye!')
 break
 else:
 print_say(f'you just said {inp}')
 continue

First, import the functions voice_to_text() and print_say() from the mptpkg
package directly. Recall that in the script __init__.py, you’ve already imported
the two functions from the modules .mysr and .mysay to the package. As a
result, here you can directly import the two functions from the package.

The rest of the script is the same as that in repeat_me1.py. It repeats what
you say. If you say, “Stop listening,” the script stops.

The following is an interaction with repeat_me2.py, with my voice input
in bold:

Python is listening...
you just said how are you
Python is listening...
you just said I am testing a python package
Python is listening...
you just said stop listening; goodbye!

As you can see, the script is working properly, which means you’ve suc-
cessfully imported functions from the local package.

More on Python Packages
Before you move on, I want to mention a couple of things about Python
packages.

First, you can add more modules to your package. Later in this book,
you’ll add more modules to the existing local package mptpkg. You’ll use
just one local package for the whole book. This will reduce the number of
directories and help organize your files.

Second, if you have an interesting package that you want to share with
the rest of the world, you can easily do so. You just need to add a few more
files, such as the license, a README file, and so on. For a tutorial on how
to distribute your Python packages, see, for example, the Python Packaging
Authority website, https://packaging.python.org/tutorials/packaging-projects/.

https://packaging.python.org/tutorials/packaging-projects/

94 Chapter 5

Interactive Guess the Number Game
Guess the Number is a popular game in which one player writes down a num-
ber and asks the other player to guess it in a limited number of attempts.
After each guess, the first player tells whether the guess is correct, too high,
or too low.

Various versions of the game are available online and in books, and
we’ll look at our own version to guess a number between one and nine.
Start a new script and save it as guess_hs.py; the hs stands for hear and say.

Because the script is relatively long, I’ll break it into three parts and
explain them one by one. Listing 5-1 gives the first part.

1 import time
import sys

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

Print and announce the rules of the game in a human voice
2 print_say('''Think of an integer,
 bigger or equal to 1 but smaller or equal to 9,
 and write it on a piece of paper''')
print_say("You have 5 seconds to write your number down")
Wait for five seconds for you to write down the number
time.sleep(5)
print_say('''Now let's start. I will guess a number and you can say:
 too high, that is right, or too small''')
The script asks in a human voice whether the number is 5
print_say("Is it 5?")
The script is trying to get your response and save it as re1
Your response has to be 'too high', 'that is right', or 'too small'
3 while True:
 re1 = voice_to_text()
 print_say(f"You said {re1}")
 if re1 in ("too high", "that is right", "too small"):
 break
If you say "that is right", game over
 if re1 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
--snip--

Listing 5-1: Part 1 of the Guess the Number game

We start the script by importing needed modules 1. We import the time
module so we can pause the script for a period of time. We also import the
sys module to exit the script when it is finished.

As discussed in the previous section, we import voice_to_text() and
print_say() from the local package mptpkg to convert voice to text as well as
to print out and speak the text message.

Speaking Applications 95

The script then speaks and prints out the rules of the game 2. Since
the instructions span several lines, we put them in triple quotation marks to
make them more readable.

N O T E When you have text that spans multiple lines and you want to print it or convert it to
speech, use triple quotation marks; for example:

 print(''' Line 1 text,
 line 2 text,
 line 3 text''')

The script announces that you have five seconds to write down a num-
ber then pauses for five seconds by using sleep() to give you time to write
your number.

The script then begins to guess; it will ask in a human voice whether
the number is five. At 3, we start an infinite loop to take your voice input.
When you speak into the microphone, the computer converts your voice
input into a text string variable named re1. The script repeats what you said
back to you. Your response needs to be one of three phrases: “too high,”
“that is right,” or “too small.” If it isn’t, the script will keep asking you for
a response until it matches one of the phrases. This gives you a chance to
have a correct response before the script moves on to the next step.

If your response is “that is right,” the computer will say, “Yay, lucky me!”
and exit the script. We’ll enter the behavior for the response “too high”
next. Listing 5-2 shows the middle part of the guess_hs.py script.

--snip--
If you say "too high", the computer keeps guessing
elif re1 == "too high":
 # The computer guesses 3 the second round
 print_say("Is it 3?")
 # The computer is trying to get your response to the second guess
 while True:
 re2 = voice_to_text()
 print_say(f"You said {re2}")
 if re2 in ("too high", "that is right", "too small"):
 break
 # If the second guess is right, game over
 if re2 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
 # If the second guess is too small, the computer knows it's 4
 elif re2 == "too small":
 print_say("Yay, it is 4!")
 sys.exit
 # If the second guess is too high, the computer guesses the third time
 elif re2 == "too high":
 # The third guess is 1
 print_say("Is it 1?")
 # The computer is getting your response to the third guess
 while True:
 re3 = voice_to_text()
 print_say(f"You said {re3}")

96 Chapter 5

 if re3 in ("too high", "that is right", "too small"):
 break
 # If the third guess is too small, the computer knows it's 2
 if re3 == "too small":
 print_say("It is 2!")
 sys.exit
 # If the third guess is right, game over
 elif re3 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
--snip--

Listing 5-2: The “too high” behavior

If your response is “too high,” the computer will keep guessing, this
time a lower number. The second guess from the computer will be three
because guessing three reduces the number of attempts the computer
needs to find out the answer. The script will detect and catch your response
to the second guess.

Here are the options for your response to the second guess: If it’s “that
is right,” the computer will say “Yay, lucky me!” and exit the script. If it’s
“too small,” the computer will know that the number is four and say so. If
it’s “too high,” the computer will make a third guess of one.

Then, the computer captures your response to the third guess. If
your response is “too small,” the computer will know that the number is
two. If your response is “that is right,” the computer will say, “Yay, lucky
me!” and exit.

Now let’s look at the final section of guess_hs.py, which handles a “too
small” response to the first guess. Listing 5-3 shows the code.

--snip--
If you say "too small", the computer keeps guessing
elif re1 == "too small":
 # The computer guesses 7 the second round
 print_say("Is it 7?")
 # The computer is trying to get your response to the second guess
 while True:
 re2 = voice_to_text()
 print_say(f"You said {re2}")
 if re2 in ("too high", "that is right", "too small"):
 break
 # If the second guess is right, game over
 if re2 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
 # If the second guess is too high, the computer knows it's 6
 elif re2 == "too high":
 print_say("Yay, it is 6!")
 sys.exit
 # If the second guess is too small, the computer guesses the third time
 elif re2 == "too small":
 # The third guess is 8

Speaking Applications 97

 print_say("Is it 8?")
 while True:
 re3 = voice_to_text ()
 print_say(f"You said {re3}")
 if re3 in ("too high", "that is right", "too small"):
 break
 # If the third guess is too small, the computer knows it's 9
 if re3 == "too small":
 print_say("It is 9!")
 sys.exit
 # If the third guess is right, game over
 elif re3 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit

Listing 5-3: The “too small” behavior

The final section of the script is similar to the middle section. If you
tell the computer that the first guess of five is “too small,” the computer will
give you a second guess of seven. The script will then catch your response to
the second guess.

If you respond “that is right,” the computer will say, “Yay, lucky me!” and
exit the script. If you say “too high,” the computer will know that the number
is six. If your response is “too small,” the computer will make a third guess of
eight.

The computer then captures your response to the third guess. If your
response is “too small,” the computer will know that the number is nine. If
your response is “that is right,” the computer will say, “Yay, lucky me!” and
exit the script.

If you have a good internet connection in a fairly quiet environment,
you can have close-to-perfect communication with the computer. The inter-
net connection is important because we use the Google Web Speech API to
convert voice input into text. The SpeechRecognition module has an offline
method called recognize_sphinx(), but it makes a lot of mistakes, so we use
the online method.

Here’s the written output from the script when my number was 8 (my
voice input is in bold):

Please think of an integer,
bigger or equal to 1 but smaller or equal to 9,
and write on a piece of paper
You have 5 seconds to write it down
Now let's start. I will guess a number and you can say:
too high, that is right, or too small
Is it 5?
You said too small
Is it 7?
You said too small
Is it 8?
You said that is right
Yay, lucky me!

98 Chapter 5

The script understood every word I said perfectly. This is, of course,
partly because I chose certain words to avoid ambiguity. When building
your own projects, you’ll want to use voice commands that are unique or
put the words in context to get consistently correct results. Since each voice
command is usually short, the Python script may have difficulty grasping
the context of your voice input and returning the right words.

For example, if you say “too large” into the microphone, the script may
return “two large,” which is a phrase that does make sense. That is why we
use “too high” instead of “too large” in guess_hs.py.

Similarly, when I spoke “too low” into the microphone, the script returned
“tulo” from time to time. When I use “too small,” I get the correct response
each time.

T RY IT OU T

Run guess_hs.py and play a few rounds. See if Python can understand each of
your responses on the first try.

Speaking Newscast
In this project, we’ll scrape the NPR News website to collect the latest news
summary and have Python read it out loud. This project is split into two
scripts: one to scrape and organize the news, another to handle the speech
recognition and text-to-speech features. Let’s start with the web scraping.

Scrape the News Summary
First, we need to scrape the information from the news site and compile it
into a clean and readable format.

Different news sites arrange their content differently, so the methods
for scraping are often slightly different. You can refer to Chapter 6 for the
basics of web scraping. If you’re interested in scraping other news sites,
you’ll need to adjust this code based on the features of the website. Let’s
first look at the site and the corresponding source code.

The news we’re interested in is on the front page of the NPR News
website, shown in Figure 5-2.

One handy feature of this page is the short news summaries. As you can
see, the front page lists the latest news with a short summary for each news
article.

You want to extract the news title and the teaser of each news article
and print them out. To do this, you need to locate the corresponding tags
in the HTML program.

Speaking Applications 99

Figure 5-2: News summaries on the NPR News front page

While on the web page, press CTRL-U on your keyboard. The source
code for the web page should appear. You can see that it’s almost 2,000
lines long. To locate the tags you need, press CTRL-F to open a search
box at the top-right corner. Because the title of the first news article starts
with “Answering Your Coronavirus Questions,” as shown in Figure 5-2, you
should enter Answering Your Coronavirus Questions and click Search. Then
skip to the corresponding HTML code, shown in Listing 5-4.

--snip--
1 <div class="item-info">
 <div class="slug-wrap">
 <h3 class="slug">
<a href="https://www.npr.org/series/821003492/the-national-conversation-with-
all-things-considered">The National Conversation With All Things Considered

</h3>
 </div>
2 <h2 class="title">
<a href="https://www.npr.org/2020/04/28/847585398/answering-your-coronavirus-
questions-new-symptoms-economy-and-virtual-celebratio" data-
metrics='{"action":"Click Featured Story Headline 1-
3","category":"Aggregation"}' >Answering Your Coronavirus Questions: New
Symptoms, Economy And Virtual Celebrations

</h2>
3 <p class="teaser">
<a href="https://www.npr.org/2020/04/28/847585398/answering-your-coronavirus-
questions-new-symptoms-economy-and-virtual-celebratio"><time datetime="2020-
04-28">April 28, 2020 • </time>On this
broadcast of The National Conversation, we answer your questions
about the economy, mental health and new symptoms of COVID-19. We'll also
look at how people are celebrating big life events.

100 Chapter 5

</p>
</div>
--snip--

Listing 5-4: Part of the source code for the NPR News front page

Notice that all the title and teaser information are encapsulated in a
parent <div> tag with a class attribute of item-info 1. Information for the
news title is held in a child <h2> tag with a class attribute of title 2. The
information for the teaser is held in a child <p> tag with a class attribute of
teaser 3.

We’ll use these patterns to write a Python script to extract the informa-
tion we need. The script news.py will scrape the information and organize
all titles and summaries in a clean and concise way. I’ve added comments in
places that need more detailed explanations.

The script will compile the news summary and print it out in text. Enter
Listing 5-5 and save it as news.py.

Import needed modules
import requests
import bs4

Obtain the source code from the NPR news website
1 res = requests.get('https://www.npr.org/sections/news/')
res.raise_for_status()
Use beautiful soup to parse the code
soup = bs4.BeautifulSoup(res.text, 'html.parser')
Get the div tags that contain titles and teasers
div_tags = soup.find_all('div',class_="item-info")
Index different news
2 news_index = 1
Go into each div tag to retrieve the title and the teaser
3 for div_tag in div_tags:
 # Print the news index to separate different news
 print(f'News Summary {news_index}')
 # Retrieve and print the h2 tag that contains the title
 h2tag = div_tag.find('h2', class_="title")
 print(h2tag.text)
 # Retrieve and print the p tag that contains the teaser
 ptag = div_tag.find('p', class_="teaser")
 print(ptag.text)
 # Limit to the first 10 news summaries
 news_index += 1
 if news_index>10:
 break

Listing 5-5: Python code to scrape the NPR News front page

We start by importing the needed modules bs4 and requests (bs4 is the
newest version of the Beautiful Soup library). Follow the three steps in
Chapter 2 for installing these modules if you need to.

Speaking Applications 101

At 1, we obtain the source code for the NPR News front page, which
is in HTML format. We then use the bs4 module to parse HTML files.
Because the information we need is encapsulated in <div> tags with a
class attribute of item-info, we find all such tags and put them in a list called
div_tags. To separate different news summaries, we create a variable news
_index to mark them 2.

We then go into each individual <div> tag we’ve collected 3. First, we
print out the news summary index to separate out individual news items.
Second, we extract the <h2> tag that contains the news title and print it out.
Third, we extract the <p> tag that contains the news summary and print it out.
Finally, we stop if the news index exceeds 10 so that we limit the printout to
10 news summaries.

If you run news.py, the output will look like Listing 5-6.

News Summary 1
Answering Your Coronavirus Questions: New Symptoms, Economy And Virtual Celebrations
April 28, 2020 • On this broadcast of The National Conversation, we answer your questions
about the economy, mental health and new symptoms of COVID-19. We'll also look at how people
are celebrating big life events.
News Summary 2
More Essential Than Ever, Low-Wage Workers Demand More
April 28, 2020 • In this lockdown, low-wage workers have been publicly declared "essential" —
up there with doctors and nurses. But the workers say their pay, benefits and protections
don't reflect it.
News Summary 3
We Asked All 50 States About Their Contact Tracing Capacity. Here's What We Learned
April 28, 2020 • To safely reopen without risking new COVID-19 outbreaks, states need enough
staffing to do the crucial work of contact tracing. We surveyed public health agencies to
find out how much they have.
News Summary 4
Coronavirus Has Now Killed More Americans Than Vietnam War
April 28, 2020 • The number of lives taken by COVID-19 in the U.S. has reached a grim
milestone: More people have died of the disease than the 58,220 Americans who perished in the
Vietnam War.
--snip--

Listing 5-6: News summary scraped from the NPR News front page

Now we’ll get Python to read the news to us.

Add the Text-to-Speech Features
The next step is to have the text-to-speech module convert the news sum-
mary into spoken words. Add Listing 5-7 into a new file and save it as
news_hs.py.

Import needed modules
import requests
import bs4
import sys

Import functions from the local package mptpkg
from mptpkg import voice_to_text

102 Chapter 5

from mptpkg import print_say
Define the news_teaser() function
1 def news_teaser():
 --snip--
 2 print_say(f'News Summary {news_index}')
 h2tag = div_tag.find('h2', class_="title")
 print_say(h2tag.text)
 ptag = div_tag.find('p', class_="teaser")
 print_say(ptag.text)
 --snip--
Print and ask you if you like to hear the news summary
print_say("Would you like to hear the NPR news summary?")
Capture your voice command
inp = voice_to_text().lower()
If you answer yes, activate the newscast
if inp == "yes":
 news_teaser()
Otherwise, exit the script
else:
 sys.exit

Listing 5-7: Python code for a voice-activated newscast

We first import the usual modules, and we import voice_to_text() and
print_say() from the self-made mptpkg package.

We then define a function called news_teaser() 1, which accomplishes
whatever news.py does. The only exception is that instead of just printing
out the news index, title, and teaser, it both prints and speaks them 2. We
then set the script to ask, “Would you like to hear the NPR news summary?”
The voice_to_text() function captures your voice response and converts it
into a string variable with all lowercase letters. If you say yes, Python will
start broadcasting the news. If you answer anything other than yes, the
script will exit.

T RY IT OU T

Run news_hs.py and hear news from NPR. To save time, modify the script so
that you’ll hear only the first 5 news summaries instead of 10.

Voice-Controlled Wikipedia
We’ll build a talking Wikipedia in this section. Unlike with the newscaster
project, we’ll use the wikipedia module to get the information we need
directly. After that, we’ll get the script to understand questions you ask,
retrieve the answer, and read it aloud.

Speaking Applications 103

Access Wikipedia
Python has a wikipedia module that does the work of delving into topics you
want to know about, so we don’t have to code that part ourselves. The mod-
ule is not in the Python standard library or the Anaconda navigator. You
should install it with pip. Open the Anaconda prompt (in Windows) or a
terminal (in Mac or Linux) and run the following command:

pip install wikipedia

Next, run the following script as wiki.py:

import wikipedia

my_query = input("What do you want to know?\n")
answer = wikipedia.summary(my_query)
print(answer)

After the script is running, in the IPython console in the lower-right
panel, enter the name of a topic you want to know about. The script will
save your inquiry as the variable my_query. The summary() function will pro-
duce a summary answer to your question. Finally, the script prints out the
answer from Wikipedia.

I entered U.S. China trade war and got the following result:

What do you want to know?
U.S. China trade war
China and the United States have been engaged in a trade war through
increasing tariffs and other measures since 2018. Hong Kong economics
professor Lawrence J. Lau argues that a major cause is the growing battle
between China and the U.S. for global economic and technological dominance.
He argues, "It is also a reflection of the rise of populism, isolationism,
nationalism and protectionism almost everywhere in the world, including in the
US."

This answer is relatively short. Most searches in Wikipedia will have a
much longer result. If you want to limit the length of the responses to, say,
the first 200 characters, you can enter [0:200] after answer.

Add Speech Recognition and Text to Speech
We’ll now add the speech recognition and text-to-speech features to the
script. Enter Listing 5-8 as wiki_hs.py.

import wikipedia

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

104 Chapter 5

Ask what you want to know
1 print_say("What do you want to know?")
Capture your voice input
2 my_query = voice_to_text()
print_say (f"you said {my_query}")
Obtain answer from Wikipedia
ans = wikipedia.summary(my_query)
Say the answer in a human voice
print_say(ans[0:200])

Listing 5-8: Python code for a voice-controlled talking Wikipedia

Once you start the script, a voice asks, “What do you want to know?” 1.
At 2, the script calls voice_to_text() to convert your voice input into text.
Then, the script retrieves the response to your question from Wikipedia,
saves it as a string variable ans, and converts it to a human voice.

After running the script, if you say to the microphone, “US Federal
Reserve Bank,” you’ll get a result similar to this:

What do you want to know?
you said U.S. federal reserve bank
The Federal Reserve System (also known as the Federal Reserve or simply the
Fed) is the central banking system of the United States of America. It was
created on December 23,
1913, with the enactment

I’ve added the [0:200] character limit behind the variable ans, so only
the first 200 characters of the result are printed and spoken.

And just like that, you have your own voice-controlled talking
Wikipedia. Ask away!

T RY IT OU T

Run wiki_hs.py and ask Wikipedia about the city you live in now (or the state if
the city is not in Wikipedia). See what the output is like.

Voice-Activated Music Player
Here you’ll learn how to get Python to play a certain artist or genre of
music just by asking for it with a phrase like “Python, play Selena Gomez.”
You’ll speak the name of the artist you want to listen to, and the script will
receive that as keywords and then search for those keywords in a particular
folder. To do this, you need to be able to traverse files and folders.

Speaking Applications 105

Traverse Files in a Folder
Suppose you have a subfolder chat in your chapter folder. If you want to list
all files in the subfolder, you can use this traverse.py script:

import os

with os.scandir("./chat") as files:
 for file in files:
 print(file.name)

First, the script imports the os module. This module gives the script
access to functionalities that are dependent on the operating system, such
as accessing all files in a folder.

Next, you put all files in the subfolder chat into a list called files. The
script goes through all items in the list, and prints out the name of each item.

The output from the preceding script is as follows after I run it on my
computer:

book.xlsx
desk.pdf
storm.txt
graduation.pptx
--snip--
HilaryDuffSparks.mp3
country
classic
lessons.docx
SelenaGomezWolves.mp3
TheHeartWantsWhatItWantsSelenaGomez.mp3

As you can see, we can traverse all the files and subfolders in a folder
and print out their names. Filenames include the file extension. Subfolders
have no extension after the subfolder name. For example, I have two fold-
ers, country and classic, in the folder chat. As a result, you see country and
classic in the preceding output.

Next, you’ll use this feature to select a song you want to play.

Python, Play Selena Gomez
The script in Listing 5-9, play_selena_gomez.py, can pick out a song by what-
ever artist you name (for example, Selena Gomez) and play it. Either save
your songs in the subfolder chat or replace the file path with a path to some-
where on your computer that you keep music.

Import the required modules
import os
import random
from pygame import mixer

106 Chapter 5

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

Start an infinite loop to take your voice commands
1 while True:
 print_say("how may I help you?")
 inp = voice_to_text()
 print_say(f"you just said {inp}")
 # Stop the script if you say 'stop listening'
 if inp == "stop listening":
 print_say("Goodbye! ")
 break
 # If 'play' is in voice command, music mode is activated
 2 elif "play" in inp:
 # Remove the word play from voice command
 3 inp = inp.replace('play ','')
 # Separate first and last names
 names = inp.split()
 # Extract the first name
 Firstname = names[0]
 # Extract the last name
 if len(names)>1:
 lastname = names[1]
 # If no last name, use the first name as last name;
 else:
 lastname = firstname
 # Create a list to contain songs
 mysongs = []
 # If either first name or last name in the file name, put in list
 with os.scandir("./chat") as files:
 for file in files:
 4 if (firstname in file.name or lastname in file.name) \
and "mp3" in file.name:
 mysongs.append(file.name)
 # Randomly select one from the list and play
 5 mysong = random.choice(mysongs)
 print_say(f"play the song {mysong} for you")
 mixer.init()
 mixer.music.load(f'./chat/{mysong}')
 mixer.music.play()
 break

Listing 5-9: Python code to voice activate a song by an artist on your computer

We first import the needed modules. In particular, we import the os
module to traverse files and the random module to randomly select a song
from a list the script will build. We use mixer() in the pygame module to play
the music file.

We then start an infinite loop 1 to put the script in standby mode to
wait for your voice commands. If the script detects the word play in your
voice command, the music mode is activated 2. We then replace the word
play and the whitespace behind it with an empty string 3 so that your
command “Play Selena Gomez” becomes Selena Gomez. The next command

Speaking Applications 107

separates the first name and the last name. For artists who are known by
just their first names (such as Madonna, Prince, or Cher), we put their first
name as a placeholder in the variable lastname.

We then traverse through all files in the subfolder chat. If a file has the
mp3 extension and contains either the first or the last name 4, it will be added
to the list mysongs. We use choice() from the random module to randomly select
a song in the list mysongs 5 and load it with mixer.music.load(). After that, we
use mixer.music.play() to play it.

As a result, once you say to the script, “Play Selena Gomez,” one
of the two songs in the subfolder chat, SelenaGomezWolves.mp3 or
TheHeartWantsWhatItWantsSelenaGomez.mp3, will start playing.

N O T E We use the pygame module to play music files in this book. Depending on which
operating system you are using, other modules, such as playsound or vlc, can also
play music files in Python. Alternatively, you can use os.system() to open music files
in your computer’s default music player, as discussed in Chapter 5.

T RY IT OU T

Save several songs by your favorite artist, making sure that the filenames con-
tain the artist’s first and last name. Then edit and run play_selena_gomez.py so
that when you say, “Python, play Firstname Lastname,” one of your songs will
start playing.

Python, Play a Country Song
What we’ll do now is similar to interacting with the script play_selena_gomez.py,
but here you’ll learn how to access different subfolders by using the os module
as well as a different way of playing music files.

Suppose you’ve organized your songs by genre. You put all classical
music files in the subfolder classic, and all country music files in the folder
country, and so on. You’ve placed these subfolders in the folder chat you just
created.

We want to write a script so that when you say, “Python, play a country
song,” the script will randomly select a song from the folder country and play
it. Enter the code in Listing 5-10 and save it as play_genre.py.

Import needed modules
import os
import random
from pygame import mixer

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

108 Chapter 5

while True:
 print_say("how may I help you?")
 inp = voice_to_text().lower()
 print_say(f'you just said {inp}')
 if inp == "stop listening":
 print_say('Goodbye!')
 break
 elif "play a" in inp and "song" in inp:
 # Remove 'play a' and 'song' so that only the genre name is left
 1 inp = inp.replace('play a ','')
 2 inp = inp.replace(' song','')

 # Go to the genre folder and randomly select a song
 with os.scandir(f"./chat/{inp}") as entries:
 mysongs = [entry.name for entry in entries]
 # Use pygame mixer to play the song
 3 mysong = random.choice(mysongs)
 print_say(f"play the song {mysong} for you")
 mixer.init()
 mixer.music.load(f"./chat/{inp}/{mysong}")
 mixer.music.play()
 break

Listing 5-10: Python code to voice activate a song by genre

Python checks for the terms play a and song in the voice command and
activates the music mode if it finds them. The script then replaces play a 1
and song 2 as well as the whitespace behind them with an empty string,
leaving only the genre—country, in this case—in the voice command. This
is used as the folder for the script to search: in this case, ./chat/country.
Finally, the script randomly selects a song from the folder 3 and plays it.

Note that we use lower() after voice_to_text() in the script so that the voice
command is all lowercase. We do this because the script sometimes converts
the voice command into play A Country Song. We can avoid mismatch due to
capitalization. On the other hand, the path and filenames are not case sensi-
tive, so even if you have capital letters in your path or filenames, there will not
be any mismatch.

T RY IT OU T

Organize your music into various categories. Save a few songs in the subfolder
classic in the chat folder you created. If you say, “Play a classic song,” see if a
song in the folder will start playing.

Speaking Applications 109

 Summary
In this chapter, you first learned to create a Python package to contain the
local text-to-speech and speech recognition modules. After that, you built
several real-world applications that can understand voice commands, react,
and speak.

You created a voice-controlled, talking Guess the Number game. In the
game, you pick a number between one and nine and interact with the script
to let it guess. Then you learned how to parse text to extract a news summary
from the NPR website, adding the speech recognition and text-to-speech fea-
tures to make a voice-controlled newscast.

You learned how to use the wikipedia module to obtain answers to your
inquiries.

You traversed files in a folder on your computer by using the os module,
and then created a script that plays a genre or artist when you ask it to.

Now that you know how to make Python talk and listen, you’ll apply both
features to many other interesting situations throughout the rest of the book
so that you can interact with your computer via voice only.

 End-of-Chapter Exercises

1. Modify guess_hs.py so that the third guess of the script is two instead
of one.

2. Change wiki.py so that it prints out the first 300 characters of the result
from Wikipedia.

3. Modify play_genre.py so that the script plays music by using the os module
and your default music player on your computer, instead of the pygame
module.

4. Suppose the music files on your computer are not in MP3 format but in
WAV format. How can you modify play_selena_gomez.py so that the script
still works?

6
W E B S C R A P I N G P O D C A S T S ,

R A D I O S , A N D V I D E O S

In this chapter, you’ll build on the web-
scraping basics from Chapter 5. You’ll use

these skills to voice-activate podcasts, live radio
broadcasts, and videos on different websites.

You’ll also learn how HyperText Markup Language (HTML) works and
how the various types of HTML tags construct web pages. You’ll learn how
to use Python’s Beautiful Soup library to parse HTML files and extract
information.

With all these skills, you’ll build three apps to do the following:

•	 Parse the source file of online podcasts, locate an MP3 file, and play the
podcast.

•	 Use voice control to play online live radio.

•	 Play online videos, such as NBC’s Nightly News with Lester Holt.

Before you begin, set up the folder /mpt/ch06/ for this chapter. As usual,
you can download all the code for all the scripts from https://www.nostarch
.com/make-python-talk/.

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

112 Chapter 6

NE W SKIL L S

• Learning how various HTML tags work

• Parsing an HTML file and extracting information from it

• Using the pygame module to pause or stop an audio file while it’s playing

• Using the selenium module to control websites, online podcasts, and online
videos

• Accessing an online radio station

 A Primer on Web Scraping
The Beautiful Soup library is designed to extract information from web-
sites. We’ll use it often in this book, just as many Python programmers do
in the real world.

I’ll first discuss the basics of HTML markup and how different types of
tags form various blocks on a website. You’ll then learn to use the Beautiful
Soup library to extract information from websites by parsing their source code.

What Is HTML?
As noted at the start of the chapter, HTML stands for HyperText Markup
Language, the programming language that tells browsers how to construct
and display web page content. HTML uses various types of tags to build the
structure of web pages.

Anatomy of an HTML Tag

Table 6-1 lists some of the commonly used tags and their main functions.

Table 6-1: Commonly Used HTML Tags

Tag name Description

<html> The root-level tag of an HTML document. It encapsulates all other HTML tags.

<head> The head section of an HTML document that contains metadata about the
page.

<title> The title of the web page, to be displayed on the tab of the browser.

<body> The body of an HTML document, with all displayed content.

<h1> A level-1 heading, for example, the title of a news article.

<p> A paragraph of displayed content.

<div> A container used for page elements that divide the HTML document into
sections.

<a> A hyperlink to link one page to another.

 A list item.

Web Scraping Podcasts, Radios, and Videos 113

All tags start with < > and end with </ > so that the browser can identify
separate tags. For example, paragraph tags start with <p> and close with </p>.

N O T E A complete list of all HTML tags and their uses can be found at https://html.spec
.whatwg.org/multipage/.

Let’s use <a> to illustrate the components of HTML tags. Here’s an
example of creating a hyperlink by using an <a> tag:

Libraries

This hyperlink has optional attributes in the opening tag: <a class=
"suprablue" href="http://libraries.uky.edu">. The class attribute tells the
browser which style to use from the Cascading Style Sheets (CSS), where
the class name suprablue is predefined (you’ll learn how to define a class
in the following section). The href attribute specifies the destination of
the hyperlink, http://libraries.uky.edu/. The content of the tag that will be
displayed on the page is between the opening and closing tags: Libraries.

From HTML Tags to Web Pages

To understand how HTML uses tags to construct a web page, let’s look at
an extremely simplified example. Enter the script in Listing 6-1 and save
it as UKYexample.html in your chapter folder, or you can download the file
from the book’s resources page. All HTML files need the extension .html
or .htm.

 1 <html>
 <head>
 <title>Example: University of Kentucky</title>
<style>
.redtext {
 color: red;
}
.leftmargin {
 margin-left: 10px;
}
</style>
 </head>
 2 <body>
 <p>Below are some links:</p>
 <p>
 University of Kentucky Libraries</p>
 <p>
 University of Kentucky Directory</p>
 </body>
</html>

Listing 6-1: HTML code for a simple web page

https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
http://libraries.uky.edu/

114 Chapter 6

Before I explain the code, let’s see how the actual web page looks.
Go to your chapter folder and open UKYexample.html with your preferred
web browser. I use Google Chrome, and the web page comes out as in
Figure 6-1.

Figure 6-1: A simple web page

Now let’s link the HTML code to the web page display.
At 1, we start an opening <html> tag to contain all the code in the script.

Then, we have a <title> tag nested in a <head> tag. The <head> tag is usually
used to contain metadata, such as the document title or CSS styles. The con-
tent of the <title> tag is Example: University of Kentucky, which sets the title of
the web page shown in the browser tab at the top-left corner in Figure 6-1.

The content inside the <style> tag is to define two classes: redtext and
leftmargin. The first one tells the HTML to display the content in red, while
the second tells the HTML to leave a 10-pixel left margin. You can specify
multiple styles such as background color, padding, or margins in one class.

At 2, we start the body HTML that will be displayed on the page. Inside
this we have three nested <p> tags. A <p> tag defines a separate paragraph in
an HTML document; adding a new <p> tag starts a new paragraph. The first
<p> tag contains the message Below are some links:.

We then provide two hyperlinks, each in in an <a> tag nested in a <p> tag.
We put each <a> tag in a separate <p> tag so the links are displayed as two
different paragraphs instead of side by side on the same line. If you click the
first link, it will bring you to the University of Kentucky Libraries. If you click
the second link, you’ll be directed to the University of Kentucky Directory.
The first tag has a class attribute of redtext, displaying the text in red, as
defined in the <style> tag previously. Similarly, the second tag has a class
attribute of leftmargin, and as a result, a 10-pixel margin precedes the text
University of Kentucky Library.

Extract Information with Beautiful Soup
Now that you understand how a few basic HTML tags work, you’ll use the
Beautiful Soup library to parse the HTML code and extract the informa-
tion you want. I’ll first discuss how to parse a locally saved HTML file. Then
you’ll learn how to extract information from a live web page.

Web Scraping Podcasts, Radios, and Videos 115

Let’s revisit the simple example UKYexample.html saved in your chapter
folder. Suppose you want to extract some web addresses from a web page.
You can use Listing 6-2, parse_local.py, to accomplish the task.

Import the Beautiful Soup library
from bs4 import BeautifulSoup
Open the local HTML file as a text file
1 textfile = open("UKYexample.html", encoding='utf8')
Use the findAll() function to locate all <p> tags
soup = BeautifulSoup(textfile, "html.parser")
ptags = soup.findAll("p")
Print out <p> tags
print(ptags)
Find the <a> tag nested in the third <p> tag
2 atag = ptags[2].find('a')
print(atag)
Print the web address of the hyperlink
print(atag['href'])
Print the content of the <a> tag
print(atag.text)

Listing 6-2: Parsing a local HTML file

First, we import BeautifulSoup() from the bs4 module, the latest version
of Beautiful Soup. At 1, we open the local HTML file as a text file by using
the built-in Python function open(). We then use findAll() to locate all <p>
tags in the HTML file, and we put them in the list ptags.

N O T E Listing 6-2 assumes you’ve put the file UKYexample.html in the same folder as the
script parse_local.py. If the file is elsewhere, you must specify its path at 1.

There are three <p> tags in the list ptags:

[<p>Below are some links:</p>,
<p>
University of Kentucky Libraries</p>,
<p>
University of Kentucky Directory</p>]

Let’s use the third tag as an example. At 2, we locate the <a> tag nested
in the third <p> tag. We then print out the href attribute of the <a> tag:

https://directory.uky.edu/

Finally, we print out the content of the <a> tag:

University of Kentucky Directory

The output for the whole script is as follows:

[<p>Below are some links:</p>,
<p>

116 Chapter 6

University of Kentucky Libraries</p>,
<p>
University of Kentucky Directory</p>]

University of Kentucky Directory
https://directory.uky.edu/
University of Kentucky Directory

Scrape Live Web Pages
Now let’s scrape a live web page. The HTML markup for a live web page is
much more complicated than our simple static version and might be thou-
sands of lines long, so you’ll need to learn to quickly locate the lines of code
you want.

Suppose you want to extract the contact information from the University
of Kentucky Libraries website. Go to http://libraries.uky.edu/. Then scroll to the
bottom of the page and you’ll see the contact information for various areas,
as shown in Figure 6-2.

Figure 6-2: Information you want from a live web page

You want to extract the department name, phone number, and email
address for each of the three departments shown in Figure 6-2: Circulation,
Reference, and Interlibrary Loan. First you need to locate the correspond-
ing tags in the HTML document.

While on the web page, press CTRL-U on your keyboard (or right-
click and choose ViewSource). The source code for the web page
should appear. You can see that it’s more than 2,000 lines long. To locate
the tags you need, press CTRL-F to access a search box at the top-right
corner. Enter Circulation and click Search to skip to the corresponding
HTML code, shown in Listing 6-3.

--snip--
1 <div class="sf-middle">
 2 <div class="dashing-li">
 Circulation:

 <div class="contact_phone"><a class="suprablue"
 href="tel:8592181881">(859) 218-1881</div>
 <div class="contact_email"><a class="suprablue"
 href="mailto:lib.circdesk@email.uky.edu">

http://libraries.uky.edu/

Web Scraping Podcasts, Radios, and Videos 117

 lib.circdesk@email.uky.edu</div>

 </div>
 3 <div class="dashing-li">
 Reference:

 <div class="contact_phone"><a class="suprablue"
 href="tel:8592182048">(859) 218-2048</div>
 <div class="contact_email"><a class="suprablue"
 href="mailto:refdesk@uky.edu">refdesk@uky.edu</div>

 </div>
 4 <div class="dashing-li">
 Interlibrary Loan:

 <div class="contact_phone"><a class="suprablue"
 href="tel:8592181880">(859) 218-1880</div>
 <div class="contact_email"><a class="suprablue"
 href="mailto:ILLBorrowing@uky.edu">
 ILLBorrowing@uky.edu</div>

 </div>
 <div class="dashing-li-last">
 All Other Questions & Comments:

 <a class="suprablue"
 href="mailto:webadmin@lsv.uky.edu">
 WebAdmin@lsv.uky.edu
 </div>
 </div>
--snip--

Listing 6-3: Part of the source code for a live web page

Notice that all the information is encapsulated in a parent <div> tag
with class attribute of sf-middle 1. Information for the Circulation depart-
ment (name, phone number, and email address) is held in a child <div>
tag with class attribute of dashing-li 2. The information for the other two
areas, Reference 3 and Interlibrary Loan 4, is held in two other child
<div> tags within the parent tag. Within each child tag, subtags each contain a
piece of the following information: department name, phone number, and
email address.

These patterns are important to notice when writing a Python script to
extract the information you need. Next, I’ll explain how to use these pat-
terns to extract the information from the HTML file.

Download scrape_live_web.py from the book’s resources page and save
it in your chapter folder. The first part of the script is shown in Listing 6-4,
which locates the <div> tags for each of the three areas.

from bs4 import BeautifulSoup
import requests
Provide the web address of the live web
url = 'http://libraries.uky.edu'

118 Chapter 6

Obtain information from the live web
1 page = requests.get(url)
Parse the page to obtain the parent div tag
soup = BeautifulSoup(page.text, "html.parser")
div = soup.find('div', class_="sf-middle")
Locate the three child div tags
2 contacts = div.find_all("div", class_="dashing-li")
Print out the first child div tag to examine it
print(contacts[0])
--snip--

Listing 6-4: Python code to scrape a live web page

We import the requests module to obtain the source code from the live
web page. The address of the web page is defined in the variable url. At 1,
we use get() to fetch the HTML code. Then, we find the <div> tag with the
class value of sf-middle and use it as the parent tag.

W A R N I N G Be careful not to miss the trailing underscore in class_="sf-middle" or class_=
"dashing-li". We must use the trailing underscore because the name class is a
Python keyword and cannot be used as a variable name. See Chapter 1 for Python
rules.

At 2, we locate the three child <div> tags with the class value of dashing-li
and put them in the list contacts, because each child <div> tag contains all the
contact information for one department. Each element in the list corresponds
to one of the departments. For example, the first element contains all the
information for the Circulation department, and we print it out in Listing 6-5.

<div class="dashing-li">
Circulation:

<div class="contact_phone">
(859) 218-1881</div>
<div class="contact_email"><a class="suprablue"
href="mailto:lib.circdesk@email.uky.edu">lib.circdesk@email.uky.edu
</div>

</div>

Listing 6-5: Source code for the Circulation department on the live web page

The second part of scrape_live_web.py will print out the detailed informa-
tion for each of the three areas. It is shown in Listing 6-6.

--snip--
Obtain information from each child tag
for contact in contacts:
 # Obtain the area name
 area = contact.find('span', class_="contact_area")
 print(area.text)

Web Scraping Podcasts, Radios, and Videos 119

 # Obtain the phone and email
 atags = contact.find_all('a', href = True)
 for atag in atags:
 print(atag.text)

Listing 6-6: Python code to print out the scraped information

We go into each element in the list contacts. To print out the depart-
ment name, we locate the tag with the class attribute of contact_area.
The content of the tag is the department name. The two <a> tags contain
the phone number and the email address of each department, and we also
print them out. The output is shown here:

Circulation:
(859) 218-1881
lib.circdesk@email.uky.edu
Reference:
(859) 218-2048
refdesk@uky.edu
Interlibrary Loan:
(859) 218-1880
ILLBorrowing@uky.edu

N O T E The Beautiful Soup library often provides more than one way of accomplishing the
same task. For example, findAll() and find_all() work the same, and find('span',
class_="contact_area") and find('span', {"class":"contact_area"}) produce the
same result. Many Python modules or libraries have different versions over time,
and the old functions are carried over to newer versions to maintain backward
compatibility.

Voice-Activated Podcasts
In this project, our goal is to write a script that enables you to say, “Python,
tell me the latest news,” and the script will broadcast a brief from an NPR
news podcast. You’ll first learn how to extract the MP3 file associated with
the podcast and play it, and then you’ll add the speech recognition feature
to the script so that you can voice-activate it. Because the news brief is about
five minutes long, you’ll also learn how to stop the podcast via voice control
while the news is playing.

Extract and Play Podcasts
First, find a website with a newscast you like. For this, we’ll use NPR News
Now because it’s free and updated every hour, 24/7. The web address is
https://www.npr.org/podcasts/500005/npr-news-now/.

Go to the site, and you should see something like Figure 6-3.

https://www.npr.org/podcasts/500005/npr-news-now/

120 Chapter 6

Figure 6-3: Front page of NPR News Now

As you can see, the latest news brief for me was updated at 7 AM ET on
Feb 9, 2021. Below it, you can also see news briefs from 6 AM, 5 AM, and so on.

To locate the MP3 file that contains the news briefs, right-click any-
where on the page and, from the menu that appears, select the View page
source option (or press CTRL-U). You should see the source code, as in
Figure 6-4.

Figure 6-4: Source code for NPR News Now

You’ll notice that the MP3 files are contained in <a> tags. We need to
use the Beautiful Soup library to extract all <a> tags that contain MP3 files
and then extract the link from the first tag, which will contain the latest
news brief. If you wanted to, you could listen to previous news briefs as well;
for example, the second and the third tags contain the news briefs from
6 AM and 5 AM in Figure 6-3.

Web Scraping Podcasts, Radios, and Videos 121

Next, we need to extract the link, remove unwanted components, and use
the webbrowser module to open the URL of the MP3 file so that the podcast
can start playing. The script npr_news.py, in Listing 6-7, shows how to accom-
plish this.

Import needed modules
import requests
import bs4
import webbrowser

Locate the website for the NPR news brief
url = 'https://www.npr.org/podcasts/500005/npr-news-now'
Convert the source code to a soup string
response = requests.get(url)
1 soup = bs4.BeautifulSoup(response.text, 'html.parser')
Locate the tag that contains the mp3 files
2 casts = soup.findAll('a', {'class': 'audio-module-listen'})
print(casts)
Obtain the weblink for the mp3 file related to the latest news brief
3 cast = casts[0]['href']
print(cast)
Remove the unwanted components in the link
4 pos = cast.find('?')
print(cast[0:pos])
Extract the mp3 file link, and play the file
mymp3 = cast[0:pos]
webbrowser.open(mymp3)

Listing 6-7: A script to play online podcasts

We first use get() from the requests module to obtain the source code
of the NPR News Now website and save it in the variable response. At 1, we
use the Beautiful Soup library to parse the text and the html.parser option
to specify that the source code is in HTML. We saw in Figure 6-4 that the
MP3 files are held in <a> tags with a class attribute of audio-module-listen.
Therefore, at 2 we use findAll() from Beautiful Soup to get all those tags
and put them in the list casts. Listing 6-8 shows the content of casts.

[<a class="audio-module-listen"
href="https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-
mp3/npr/newscasts/2021/02/09/newscast070736.mp3?dl=1&
siteplayer=true&size=4500000&awCollectionId=500005&
awEpisodeId=965747474&dl=1">
<b class="audio-module-listen-inner">
<b class="audio-module-listen-icon icn-play">
<b class="audio-module-listen-text">
<b class="audio-module-cta">Listen
<b class="audio-module-listen-duration">
·
5:00

, <a class="audio-module-listen"

122 Chapter 6

href="https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-
mp3/npr/newscasts/2021/02/09/newscast060736.mp3?dl=1&
siteplayer=true&size=4500000&awCollectionId=500005&
awEpisodeId=965731320&dl=1">
<b class="audio-module-listen-inner">
<b class="audio-module-listen-icon icn-play">
<b class="audio-module-listen-text">
<b class="audio-module-cta">Listen
<b class="audio-module-listen-duration">
·
5:00

, <a class="audio-module-listen"
href="https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-
mp3/npr/newscasts/2021/02/09/newscast050736.mp3?dl=1&
siteplayer=true&size=4500000&awCollectionId=500005&
awEpisodeId=965721223&dl=1">
--snip--
]

Listing 6-8: All <a> tags with a class attribute of audio-module-listen

As you can see, multiple <a> tags contain MP3 files. At 3, we extract the
first <a> tag in the list and obtains the href attribute of the tag (the link to
the MP3 file), saving it to cast. The link is as follows:

https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-
mp3/npr/newscasts/2021/02/09/newscast070736.mp3?dl=1&siteplayer=true&size=450
0000&awCollectionId=500005&awEpisodeId=965747474&dl=1

We trim the link so that it ends with the .mp3 extension. To do that, we
use the fact that the ? character is right after .mp3 in the link and then use
the string method find() to locate the position of ? in the link 4. We then
trim the link accordingly and print it out. The trimmed link is as follows:

https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-
mp3/npr/newscasts/2021/02/09/newscast070736.mp3

Finally, we extract the link to the online MP3 file and use open() in the
webbrowser module to open and play the MP3 file.

If you run the script, you should hear the latest NPR news brief playing
in your default web browser.

Voice-Activate Podcasts
Next, we’ll add speech recognition to the script so you can voice-activate
the podcast. Further, since the podcast is about five minutes long, being
able to stop it with your voice is useful. To achieve that, we need to install
the pygame module because it allows the Python script to stop the audio
file while the audio is playing. The webbrowser module does not have that
functionality.

Web Scraping Podcasts, Radios, and Videos 123

Installing pygame is straightforward in Windows. Execute this line of
code in an Anaconda prompt with your virtual environment activated:

pip install pygame

Then follow the instructions.
If you are using Mac, recent versions of macOS require the installation

of Pygame 2. To install it, execute this line of code in a terminal with your
virtual environment activated:

pip install pygame==2.0.0

Then follow the instructions.
If you are using Linux, execute the following three lines of code in a

terminal with your virtual environment activated:

sudo apt-get install python3-pip python3-dev
sudo pip3 install pygame
pip install pygame

See Appendix A at the end of this book for further detail. If the instal-
lation is not successful, you can use the vlc module as an alternative.

The script news_brief_hs.py in Listing 6-9 shows how to use voice control
to activate the NPR News Now podcast and stop it whenever you want.

from io import BytesIO

import requests
import bs4
from pygame import mixer

Import functions from the local package
from mptpkg import voice_to_text, print_say

1 def news_brief():
 # Locate the website for the NPR news brief
 url = 'https://www.npr.org/podcasts/500005/npr-news-now'
 # Convert the source code to a soup string
 response = requests.get(url)
 soup = bs4.BeautifulSoup(response.text, 'html.parser')
 # Locate the tag that contains the mp3 files
 casts = soup.findAll('a', {'class': 'audio-module-listen'})
 # Obtain the web link for the mp3 file
 cast = casts[0]['href']
 # Remove the unwanted components in the link
 mp3 = cast.find("?")
 mymp3 = cast[0:mp3]
 # Play the mp3 using the pygame module
 mymp3 = requests.get(mymp3)
 Voice = BytesIO()
 voice.write(mymp3.content)
 voice.seek(0)
 mixer.init()

124 Chapter 6

 mixer.music.load(voice)
 mixer.music.play()
2 while True:
 print_say('Python is listening…')
 inp = voice_to_text().lower()
 print_say(f'you just said: {inp}')
 if inp == "stop listening":
 print_say('Goodbye!')
 break
 # If "news" in your voice command, play news brief
 3 elif "news" in inp:
 news_brief()
 # Python listens in the background
 while True:
 background = voice_to_text().lower()
 # Stops playing if you say "stop playing"
 if "stop playing" in background:
 mixer.music.stop()
 break
 continue

Listing 6-9: Python script to voice-activate NPR News Now

We import needed modules first. In particular, we import BytesIO()
from the io module to create a temporary file to contain the news brief
audio file. This prevents crashes that could occur if the script had to over-
write the file when you rerun it.

We define news_brief() 1. This function accomplishes what we did in
npr_news.py with a few exceptions. We download the MP3 file and save it to
the temporary file voice. After that, we use the pygame module to play the
latest news brief from NPR News Now.

At 2, we start an infinite loop. At each iteration, the script captures
your voice. When the word news is in your voice command 3, the script will
call news_brief() and start playing the latest NPR news brief. While the news
is playing, the script is constantly listening to your voice command in the
background. When you say, “Stop playing,” anytime while or after the news
plays, the loop will break and go back to the main menu. If you want to end
the script, simply say, “Stop listening.”

T RY IT YOURSEL F

Wait Wait . . . Don’t Tell Me! is a weekly radio show, and recent episodes are
available as podcasts at https://www.npr.org/programs/wait-wait-dont-tell-me/.
Its source code is similar to that of NPR News Now. Create a script similar to
new_brief_hs.py to voice-activate the latest episode of the online broadcast.

https://www.npr.org/programs/wait-wait-dont-tell-me/

Web Scraping Podcasts, Radios, and Videos 125

Voice-Activated Radio Player
Our goal in this project is to write a script to play online live radio using
voice control. When you say, “Python, play online radio,” the script will go
to the website and click the Play button so that the live radio starts playing
on your computer.

We’ll be using the selenium module to automate web browser interac-
tion from Python. We’ll then add voice control to the script to achieve voice
activation.

Install the selenium Module
The selenium module is not in the Python standard library, so first we’ll
install it. Open your Anaconda prompt (Windows) or a terminal (Mac or
Linux), activate your virtual environment, and execute this command:

conda install selenium

Follow the onscreen instructions to finish the installation.

Control Web Pages
The selenium module allows you to automate web browser interactions with
Python.

Online Radio Box (https://onlineradiobox.com/us/) will serve as our radio
station platform. You can change this to any online radio station you like,
such as Magic 106.7 or NPR online radio stations.

Go to the website and you should see a screen similar to that shown in
Figure 6-5.

Figure 6-5: Front page of Online Radio Box

https://onlineradiobox.com/us/

126 Chapter 6

When the web page loads, live radio is not playing. You need to use
selenium to interact with the web browser to click the Play button (the triangle-
shaped white button at the bottom in Figure 6-5).

Now you’ll learn how to locate the XPath of the Play button on the web-
site. XPath is short for Extensible Markup Language (XML) path. It is the syntax
for finding an element on the web page by using an XML path expression.

N O T E We use the Chrome browser because it supports all major operating systems. Websites
for other browsers and other operating systems are on the Selenium website (https://
www.selenium.dev/).

Here are the steps to find the XPath of the Play button:

1. Open the web page of Online Radio Box, shown in Figure 6-5, using
the Chrome browser.

2. Put your mouse cursor on the Play button (do not click). Then right-click
and choose Inspect from the pop-up menu. The source code will show
at the right side of the web page, as shown in Figure 6-6.

3. Right-click the highlighted line of code at the right side of the page and
select CopyXPath.

4. Paste the XPath in a blank file to be used later. In this example, the
XPath for the Play button is //*[@id="b_top_play"].

Figure 6-6: Locate the XPath of the Play button

https://www.selenium.dev/
https://www.selenium.dev/

Web Scraping Podcasts, Radios, and Videos 127

Next, you need to download the web driver for a specific browser. If
you’d like to learn more about the Selenium project, an abundance of
information is on its website.

Follow the instructions at https://chromedriver.chromium.org/downloads/
and download the executable file appropriate to your operating system. In
Windows, this is chromedriver_win32.zip; extract the ZIP file and place the
executable file in the chapter folder. On Unix-based operating systems, the
executable file is called chromedriver. On Windows, the executable file is
chromedriver.exe.

W A R N I N G The XPath of a link may change constantly on many sites. You may have to get the
most updated XPath before you run a script.

As the final step, save play_live_radio.py in your chapter folder and
run it. The script, also available at the book’s resources page, is shown in
Listing 6-10.

Put your web driver in the same folder as this script
from selenium import web driver
browser = webdriver.Chrome(executable_path='./chromedriver')
browser.get("https://onlineradiobox.com/us/")
button = browser.find_element_by_xpath('//*[@id="b_top_play"]')
button.click()

Listing 6-10: Python code to automate online live radio

N O T E For Windows, it’s important to put chromedriver.exe in the same folder as play_
live_radio.py and have Chrome installed on your computer. On Linux with Firefox,
the Gecko web driver needs to be on the system path. Otherwise, the selenium module
will not be able to automate the web browser. You can find further installation details
on the Chromium website or on sites such as Stack Overflow.

We first import webdriver() from the selenium module. First, the script
launches the web browser. Then, the get() function brings us to the live
radio site based on the web address provided. We then define the Play but-
ton as a variable button, using the XPath that we’ve generated . Finally,
we use click() in the selenium module to activate the Play button on the
website. Consequently, if everything is installed and configured correctly,
when you run the script, the web browser will open and the online live
radio will start playing.

It’s educational to run the script line by line by using the F9 key. You
will see that after the first line is run, the Chrome browser opens on your
computer, and after the second, the browser brings you to the Online Radio
Box site. With the final two lines, the Play button is being activated. You will
then hear the live radio playing.

https://chromedriver.chromium.org/downloads/

128 Chapter 6

Voice-Activate Live Radio
We’ll add speech recognition and text-to-speech functionality to the script
so you can voice-activate the online live radio. The script voice_live_radio.py
in Listing 6-11 shows you how to accomplish that.

Put web driver in the same folder as this script
Import the web driver function from selenium
from selenium import webdriver
from selenium.webdriver.chrome.options import Options

Import functions from the local package
from mptpkg import voice_to_text, print_say

1 def live_radio():
 global button
 chrome_options = Options()
 chrome_options.add_argument("—headless")
 browser = webdriver.Chrome\
 (executable_path = './chromedriver',chrome_options = chrome_options)
 browser.get("https://onlineradiobox.com/us/")
 button = browser.find_element_by_xpath('//*[@id="b_top_play"]')
 button.click()

 2 while True:
 print_say("how may I help you?")
 3 inp = voice_to_text().lower()
 print_say(f'you just said {inp}')
 4 if inp == "stop listening":
 print_say('Goodbye!')
 break
 5 elif "radio" in inp:
 print_say('OK, play live radio online for you!')
 live_radio()
 while True:
 background = voice_to_text().lower()
 if "stop playing" in background:
 button.click()
 break
 else:
 continue

Listing 6-11: Python code to voice-activate online live radio

We first import all needed modules. Since we need the speech recogni-
tion and text-to-speech features, we import voice_to_text() from the local
mptpkg package to convert speech to text. We also import print_say() from
the local mptpkg package to convert text to human speech.

We then define live_radio() to accomplish what play_live_radio.py does
with a few modifications 1. When the function is activated, the script will
go to the online live radio station and click the Play button so that live radio
starts playing. We use the headless option so you won’t see a web browser
pop up. We also make the variable button a global variable so we can use the
variable later in the script.

Web Scraping Podcasts, Radios, and Videos 129

At 2, an infinite loop begins. At each iteration, the script asks, “How
may I help you?” After you speak into the microphone, voice_to_text() con-
verts your speech to text and saves it as the string variable inp. The lower()
function converts all characters to lowercase to avoid mismatch due to letter
capitalization 3.

When you say, “Stop listening,” the if branch of the code is activated 4.
The script prints Goodbye, the loop breaks, and the script ends. When the
word radio is in your voice command, the elif branch of the code is acti-
vated 5. As a result, live_radio() is called, and the online live radio starts
playing. While the radio is playing, the script is quietly listening to you in
the background. If you say, “Stop playing” anytime when the radio is play-
ing, the button will click again and the radio will change from Play to Stop.
After that, the script exits the radio mode and returns to the main menu.

T RY IT YOURSEL F

Magic 106.7 FM is a radio station in Boston (https://www.radio.com/magic1067/
listen/). Write a script similar to voice_live_radio.py to voice-activate the live radio
on this site.

 Voice-Activated Videos
You can apply the method you learned in the preceding section to voice-
activate prerecorded online videos or even online live TV.

NBC’s Nightly News with Lester Holt provides prerecorded videos at https://
www.nbcnews.com/nightly-news-full-episodes/, shown in Figure 6-7.

Figure 6-7: Front page of NBC’s Nightly News

https://www.radio.com/magic1067/listen
https://www.radio.com/magic1067/listen
/
https://www.nbcnews.com/nightly-news-full-episodes/
https://www.nbcnews.com/nightly-news-full-episodes/

130 Chapter 6

We’ll use Python to interact with the web browser to click the Play but-
ton that activates the online video. You can see a triangle-shaped Play button
on the video frame. Follow the steps in “Control Web Pages” on page 125 to
find the XPath of the button.

The script voice_online_video.py in Listing 6-12 shows how to voice-activate
the online video.

Import functions from the local package
from mptpkg import voice_to_text, print_say

Import the web driver function from selenium
from selenium import webdriver
def online_video():
 browser = webdriver.Chrome(executable_path='./chromedriver')
 browser.get("https://www.nbcnews.com/nightly-news-full-episodes")
 button = browser.find_element_by_xpath\
('//*[@id="content"]/div[6]/div/div[3]/div/\
1 section[2]/div[2]/div/div[1]/article/div[1]/h2/a[2]/span')
 button.click()
2 while True:
 print_say("how may I help you?")
 inp = voice_to_text().lower()
 print_say(f'you just said {inp}')
 if inp == "stop listening":
 print('Goodbye!')
 break
 elif "video" in inp:
 print_say('OK, play online video for you!')
 online_video()
 break

Listing 6-12: A script to voice-activate online video

The logic is the same as when dealing with live radio. We first define
online_video() to be called later. When the function is activated, the script
will go to the site, locate the XPath of the Play button 1, and click it so the
video will start playing.

An infinite loop starts at 2. At each iteration, the script asks, “How may
I help you?” After you speak into the microphone, voice_to_text() converts
your speech to text and saves it as an all-lowercase string variable inp.

When you say, “Stop listening,” the if branch of the code is activated.
The script prints Goodbye!, the loop breaks, and the script ends. When the
word video is in your voice command, the elif branch of the code is activated.
As a result, online_video() is called, and the online video starts playing.

Web Scraping Podcasts, Radios, and Videos 131

T RY IT YOURSEL F

Vimeo provides a music video by Katy Perry at https://vimeo.com/160883302/.
Write a script to voice-activate the online music video (try the XPath //*[@
id="160883302"]/div[7]/div[3]/button if you have trouble locating it).

 Summary
In this chapter, you learned the basics of web scraping: how HTML works,
including the different types and uses of HTML tags, and how to use the
Beautiful Soup library to parse HTML files and scrape the information
you need.

Armed with these techniques, you learned how to parse a source file
of the podcast NPR News Now and locate its MP3 file. You then used the
webbrowser module to play the online MP3. You also learned how to voice
activate online podcasts, using the pygame module to play the audio file so
that you can stop it anytime via voice commands.

You then learned to voice activate an Online Radio Box station.
Specifically, you learned how to use the Selenium web driver to interact
with a web browser. You directed Python to click the Play button to activate
the live radio broadcast. You also learned to use voice control to accom-
plish these tasks.

Finally, you applied the same idea to online videos, such as NBC’s
Nightly News with Lester Holt.

 End-of-Chapter Exercises

1. Modify parse_local.py to print out the class attribute value and the web
address of the <a> tag for the University of Kentucky Libraries.

2. Modify scrape_live_web.py to print out the information for the site area
All Other Questions & Comments, as shown in Figure 6-2.

3. This URL points to a podcast by Gwyneth Paltrow and Oprah Winfrey:
https://goop.com/the-goop-podcast/gwyneth-x-oprah-power-perception-soul-purpose/.
Write a script to voice activate the online podcast.

https://vimeo.com/160883302
/
https://goop.com/the-goop-podcast/gwyneth-x-oprah-power-perception-soul-purpose/

7
B U I L D I N G A V I R T U A L

P E R S O N A L A S S I S T A N T

In this and the next chapter, you’ll learn
how to create your own virtual personal

assistant (VPA), similar to Amazon’s Alexa.
You’ll first have an overview of your VPA and its

functionalities. You’ll then import all needed modules
at once so you can start to run your VPA right away.
You’ll create a script to make your VPA stand by 24/7
without disturbing you. Whenever you need assistance,
you can say, “Hello Python” to wake it up, and when you want it to stand by
again, you can use a voice command to put it in standby mode.

After that, you’ll examine various functionalities to add to your VPA.
The first two are a timer and an alarm clock.

The third functionality enables your VPA to tell jokes. When you say,
“Tell me a joke,” the script will randomly select a joke from a list and speak
it out loud to you.

134 Chapter 7

The fourth functionality sends email. If you say, “Send Jessica an email,”
the script will activate the email feature, retrieve Jessica’s email address
from your recipient list, and ask you for the subject line and content, which
you can dictate before telling the VPA to send.

In Chapter 8, you’ll learn how to make your VPA capable of answering
(almost) any question. Before you begin, set up the folder /mpt/ch07/ for
this chapter. As always, all scripts in this chapter are available at the book’s
resources page, https://www.nostarch.com/make-python-talk/.

NE W SKIL L S

• Creating a standby mode to silently wait for your commands 24/7

• Using the time-out option in the speech recognition module to make it more
responsive

• Setting a timer or an alarm clock

• Voice-activating a joke-telling functionality

• Asking Python to send an email by using the smtplib module

 An Overview of Your VPA
Before you learn about the functionalities of your VPA, let’s explore its
structure. You’ll start by downloading needed files and installing a third-
party module.

Download VPA Files
Let’s download the needed files. Go to the book’s resources website https://
www.nostarch.com/make-python-talk/ and download the following files from
the /mpt/mptpkg/ directory: mywakeup.py, mytimer.py, myalarm.py, myjoke.py,
and myemail.py. Put them in the same directory on your computer where you
place your self-made local package files. Refer to Chapter 5 for instructions.
I’ll explain the purpose of these files later in this chapter.

N O T E The files mywakeup.py, mytimer.py, and so on are local module files to be put in
the local package mptpkg. As a result, they should be placed in the package folder /
mpt/mptpkg/ instead of the chapter folder /mpt/ch07/.

Next, open the script __init__.py in the package directory /mpt/mptpkg/
on your computer. As you may recall from Chapter 5, you’ve already placed
the following two lines of code in it:

from .mysr import voice_to_text
from .mysay import print_say

https://www.nostarch.com/make-python-talk
https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

Building a Virtual Personal Assistant 135

Add the five lines of code in Listing 7-1 to the end of __init__.py.

from .mywakeup import wakeup
from .mytimer import timer
from .myalarm import alarm
from .myjoke import joke
from .myemail import email

Listing 7-1: Importing functions from local modules to the local package

This code imports the five functions wakeup(), timer(), alarm(), joke(),
and email() from the five modules to the local package so you can later
import them at the package level. More on this point soon.

Next, go to the book’s resources website and download vpa.py from the
chapter directory /mpt/ch07/. Save it on your computer where you place this
chapter’s Python scripts. The code for vpa.py is shown in Listing 7-2.

Import functions from the local package
from mptpkg import voice_to_text, print_say, wakeup, timer, alarm, joke, email

Put the script in standby
1 while True:
 # Capture your voice command quietly in standby
 wake_up = wakeup()
 # You can wake up the VPA by saying "Hello Python"
 while wake_up == "Activated":
 print_say("How may I help you?")
 inp = voice_to_text().lower()
 print_say(f'You just said {inp}.')
 if "back" in inp and "stand" in inp:
 print_say('OK, back to standby; let me know if you need help!')
 break
 # Activate the timer
 2 elif "timer for" in inp and ("hour" in inp or "minute" in inp):
 timer(inp)
 continue
 # Activate the alarm clock
 elif "alarm for" in inp and ("a.m." in inp or "p.m." in inp):
 alarm(inp)
 continue
 # Activate the joke-telling functionality
 elif "joke" in inp and "tell" in inp:
 joke()
 continue
 # Activate the email-sending functionality
 elif "send" in inp and "email" in inp:
 email()
 continue
 else:
 continue
 # End the script by including "stop" in your voice command

136 Chapter 7

 if wake_up == "ToQuit":
 print_say("OK, exit the script; goodbye!")
 break

Listing 7-2: Python code for a VPA

We first import the seven functions (voice_to_text(), print_say(), wakeup(),
and so on) from the local package mptpkg. The code in Listing 7-1 already
imported the five functions (wakeup(), timer(), and so on) from the local
modules to mptpkg, so here we import the functions at the package level
directly.

We start the script by creating an infinite loop 1. At each iteration, the
VPA listens to your voice command quietly in the background. You can say,
“Hello Python” to wake up the VPA. After it wakes up, the VPA asks, “How
may I help you?” and takes your voice command. You can activate one of the
four functionalities of the VPA 2: setting a timer, setting an alarm clock,
telling a joke, or sending an email.

You can put the VPA back on standby when you are finished by includ-
ing “back” and “standby” in your voice input. While the script is in standby,
you can terminate the script by saying, “Stop the script” or “Stop listening.”

Before running vpa.py, you need to install a third-party module.

Install the arrow Module
We’ll first install the arrow module to tell the time and date for the timer
and alarm clock functionalities in the VPA.

The Python standard library has several modules that can tell the time
and date, including the well-known time and datetime. However, they are
not very user-friendly, with complicated formatting. Further, you need to
use several modules in the Python standard library to achieve what we try
to accomplish in this chapter. As a result, we’ll use the third-party module
arrow, which offers a more convenient way to deal with times.

You can install arrow in your Anaconda prompt (Windows) or a terminal
(Mac or Linux) by using the following command, with the virtual environ-
ment chatting activated:

conda install arrow

 Manage the Standby Mode
Here you’ll set up the standby mode for your VPA. At the end of this sec-
tion, you’ll be able to activate the VPA by saying, “Hello Python.” The VPA
will respond, “How may I help you?”

If you then say, “Go back to standby,” the script will return to standby
mode and keep quiet. While it’s in standby, you can even choose to end the
script by including stop in your voice command.

Building a Virtual Personal Assistant 137

Create the Local Module mywakeup
First, you’ll set the script to recognize certain commands. Open mywakeup.py
you just downloaded in your Spyder editor. This script is based on mysr.py
from Chapter 3, with some significant modifications. Listing 7-3 highlights
the differences.

import speech_recognition as sr

speech = sr.Recognizer()
Define a wakeup() function to determine the status of the VPA
1 def wakeup():
 wakeup = "StandBy"
 voice_input = ""
 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 2 audio = speech.listen(source,timeout=3)
 voice_input = speech.recognize_google(audio).lower()
 except sr.UnknownValueError:
 pass
 except sr.RequestError:
 pass
 except sr.WaitTimeoutError:
 pass
 if "hello" in voice_input and "python" in voice_input:
 wakeup = "Activated"
 elif "stop" in voice_input:
 wakeup = "ToQuit"
 return wakeup

Listing 7-3: Python code for the mywakeup module

We first import speech_recognition and define wakeup() 1. We create a
variable wakeup and set the default value as StandBy. We then capture the
voice input from the microphone.

Here I did a little tweaking to make the script more responsive: the
timeout=3 option in the listen() method tells the script to time out every
three seconds and analyze the voice input 2, meaning it checks for a voice
command every three seconds. Without this option, the script may wait too
long to respond, and you may have to say, “Hello Python” a couple of times
before you catch the script’s attention.

We convert all text to lowercase to avoid mismatch due to capitalization.
We also use exception handling to prevent the script from crashing.

When a voice command is captured, the script checks whether hello and
Python are in the voice input. If yes, the variable wakeup changes its value to
Activated. Similarly, if you say, “Stop listening” or “Stop the script,” the
variable wakeup changes to ToQuit. When the function is called, it will
return whatever value is stored in the variable wakeup.

138 Chapter 7

Set Some Responses
Now that you know how the mywakeup module works, let’s learn how to man-
age standby mode.

Run vpa.py in your Spyder editor. You’ll notice that when the script is
running, nothing happens. However, your VPA is quietly listening in the
background. You can activate the VPA by saying, “Hello Python.” Once the
job is done, you can put it back to standby.

The following output is from one interaction with the script, with my
voice input in bold:

hello Python
How may I help you?
go back to standby
You just said go back to standby.
OK, back to standby; let me know if you need help!
hello Python
How may I help you?
go back to standby
You just said go back to standby.
OK, back to standby; let me know if you need help!
stop listening
OK, exit the script; goodbye!

As you can see, I activated the VPA and then put it back to standby. I
activated the VPA and then returned it to standby a second time. After that,
I said, “Stop listening” to end the script.

Run the script several times to ensure that you can voice-activate the
VPA, put it on standby, and end the script. Next, we’ll examine the indi-
vidual functionalities of the VPA one by one.

 Ask Your VPA to Set a Timer
Let’s explore the first feature: setting a timer. To do that, you’ll first learn
how to tell time in Python. We’ll use the arrow module to tell time in Python
and then create a timer that takes written commands. Finally, we’ll create a
timer() function in the local module mytimer that we’ll import into the VPA
script; this will allow us to set a timer by using voice commands.

Tell the Time with Python
Let’s first learn how to tell time with Python.

The following script, get_time.py, shows how to retrieve the current time
for your time zone in different formats. This is just an example so you can
familiarize yourself with the arrow module; it’s not part of the VPA script.

import arrow

Current time in HH:MM:SS format
1 current_time = arrow.now().format('H:m:s')

Building a Virtual Personal Assistant 139

print('the current time is', current_time)
2 current_time12 = arrow.now().format('hh:mm:ss A')
print('the current time is', current_time12)
We can also print out hour, minute, and second individually
3 print("the current hour is",arrow.now().format('H'))
print("the current minute is",arrow.now().format('m'))
print("the current second is",arrow.now().format('s'))

We first import the arrow module. Its now() function gives you the current
local date and time, but you need to use format() to let the script know the
format and level of detail of that information.

Table 7-1 lists some commonly used formats and the meanings associ-
ated with the format() function in arrow. For example, the uppercase HH and
H generate the current hour value in a 24-hour clock, with and without a
leading 0, respectively, whereas hh and h do the same in a 12-hour clock.

N O T E For a complete list of all formats and their meanings associated with format() in the
arrow module, go to https://arrow.readthedocs.io/en/latest/.

At 1, we retrieve the current time in H:m:s format on a 24-hour clock
and then print it out. At 2, we obtain the time on a 12-hour clock, followed
by AM or PM, in the format hh:mm:ss. Finally we print out just the hour value
of the current time 3. You can do the same for the minute value or the
second value.

If you run this script, you’ll have output similar to the following:

the current time is 8:35:46
the current time is 08:35:46,AM
the current hour is 8
the current minute is 35
the current second is 46

Table 7-1: Some Commonly Used Formats for the format() Method of the arrow
Module

Format code Meaning

dddd Full weekday name

ddd Abbreviated weekday name

MMM Abbreviated month name

MMMM Full month name

YYYY Year in normal form (for example, 2021)

HH Hour (24-hour clock) as a decimal number with leading zero

hh Hour (12-hour clock) as a decimal number with leading zero

A AM or PM

mm Minute as a decimal number with leading zero

ss Second as a decimal number with leading zero

https://arrow.readthedocs.io/en/latest/

140 Chapter 7

You can also use the arrow module to get today’s date and weekday
information, shown here in the get_date.py script:

import arrow

Get today's date
1 today_date = arrow.now()

Print today's date in different formats
2 print("today is", today_date.format('MMMM DD, YYYY'))
print("today is", today_date.format('MMM D, YYYY'))
print("today is", today_date.format('MM/DD/YYYY'))
Print today's weekday in different formats
3 print("today is", today_date.format('dddd'))
print("today is", today_date.format('ddd'))

At 1, we use now() to generate the current date and time and save it
in a string variable today_date. At 2, we print out the date in the format
of January 01, 2021, with an abbreviated form of the month name, and in
numbers using the pattern MM/DD/YYYY. At 3, we print out the day of
the week and then again in abbreviated form.

This script generates output similar to the following:

today is March 01, 2021
today is Mar 01, 2021
today is 03/01/2021
today is Monday
today is Mon

Now that you know how to tell time in Python, you’ll learn how to set a
timer.

Build a Timer
We’ll use our new arrow module skills with the sleep() function from the
time module to build a timer that takes written commands. You won’t use
this in your VPA script, but you’ll learn the skills needed to build a timer
that takes voice commands.

We’ll restrict the input to take hours only, minutes only, or hours and
minutes (the script won’t take seconds). So you can set the timer to go off
in 2 hours, or in 1 hour 30 minutes, or in 20 minutes—but not in 1 hour
30 minutes 20 seconds.

Before we go into the details of the script, let’s understand the logic
behind it. Your written command should be in the form of set a timer for
1 hour 20 minutes, set a timer for 2 hours, or set a timer for 25 minutes. The
script then saves your written command in the string variable inp.

The string method find() returns a value of -1 if the characters you’re
looking for are not in the string. We’ll use this feature to extract the hour
and minute values in inp.

Building a Virtual Personal Assistant 141

There are three cases:

•	 The value of inp.find("hour") is not -1, while the value of inp.find("minute")
is -1. This means minute is not in the variable inp but hour is. You’ve set the
timer in the form of set a timer for 2 hours. We extract the hour value
between timer for and hour and set the minute value to 0.

•	 The value of inp.find("hour") is -1, and the value of inp.find("minute") is
not -1. This means minute is in the variable inp but not hour. You’ve set
the timer in the form of set a timer for 25 minutes. We extract the min-
ute value between timer for and minute and set the hour value to 0.

•	 Neither the value of inp.find("hour") nor the value of inp.find("minute") is
-1. This means both hour and minute are in the variable inp. You’ve set the
timer in the form of set a timer for 1 hour 20 minutes. We extract the hour
value between timer for and hour and the minute value between hour and
minute.

We’ll add that amount of time to the current time to determine when
the timer should go off. We then check the time every 0.5 seconds to make
sure we don’t miss when the timer should go off. When the time reaches the
preset time, the timer goes off.

The timer is set in timer.py in Listing 7-4.

import time
import arrow

Tell you the format to set the timer
print('''set your timer; you can set it to the number of hours,
 number of minutes,
 or a combination of both ''')
Set the timer
1 inp = input("How long do you want to set your timer for?\n")
Find the positions of "timer for" and "hour" and "minute"
pos1 = inp.find("timer for")
pos2 = inp.find("hour")
pos3 = inp.find("minute")
Handle the case "set a timer for hours only"
2 if pos3 == -1:
 Addhour = inp[pos1+len("timer for"):pos2]
 Addminute = 0
Handle the case "set a timer for minutes only"
3 elif pos2 == -1:
 addhour=0
 addminute = inp[pos1+len("timer for"):pos3]
Handle the case for "set a timer for hours and minutes"
4 else:
 Addhour = inp[pos1+len("timer for"):pos2]
 Addminute = inp[pos2+len("hour"):pos3]
Current hour, minute, and second
startHH = arrow.now().format('H')
startmm = arrow.now().format('m')

142 Chapter 7

startss = arrow.now().format('s')
Obtain the time for the timer to go off
newHH = int(startHH)+int(addhour)
newmm = int(startmm)+int(addminute)
5 if newmm>59:
 newmm -= 60
 newHH += 1
newHH = newHH%24
end_time = str(newHH)+":"+str(newmm)+":"+startss
print("Your timer will go off at "+end_time)
while True:
 timenow = arrow.now().format('H:m:s')
 if timenow == end_time:
 print("Your timer has gone off!")
 break
 time.sleep(0.5)

Listing 7-4: The script to set a timer

We first print out the instructions. At 1, the script takes the user’s written
input specifying how long to set the timer, then saves this to the variable inp.

W A R N I N G In timer.py, we use int() to convert the number of minutes or hours to an integer.
Therefore, your input must be a natural number such as 2, 5, or 10. You can’t use a
decimal number such as 2.5 hours or 8.6 minutes because int() can’t convert those to
an integer.

We then check whether the input included hour and minute. If minute is
not in the input 2, we set the value of addminute to 0 and set the value of
addhour to whatever number is between timer for and hour. We use similar
methods to handle cases when hour is not in the written command 3 or
when both hour and minute are in the written command 4.

The function now() from the arrow module obtains the current time in
hour, minute, and second values. We add the values of addminute and addhour
to the current time to obtain the time when the timer should go off. At 5,
we adjust for the cases when the minute value exceeds 59 or the hour value
exceeds 23. We then set the time the alarm should go off in the H:m:s format.

We start an infinite while loop to check the current time every 0.5 sec-
onds. When the current time reaches the alarm time, we set off the alarm.
The script prints Your timer has gone off! and the script ends.

W A R N I N G The script timer.py is written to build up your skill set. It won’t be used in the final
VPA script, so we don’t use exception handling. As a result, the script is easy to break.

Here’s an example interaction with timer.py, with user input in bold:

 set your timer; you can set it to the number of hours,
 number of minutes,
 or a combination of both

Building a Virtual Personal Assistant 143

How long do you want to set your timer for?
set a timer for 1 minute
Your timer will go off at 21:9:15
Your timer has gone off!

T RY IT OU T

Run timer.py and set the timer to go off in two minutes.

Create the mytimer Module
Now we’ll create a timer() function that’s similar to the timer.py script, but
we’ll use a voice command instead of a written one.

Open the file mytimer.py you just downloaded from the book’s resources
website and open it in your Spyder editor. The module will define the func-
tion timer() that your VPA will use, shown in Listing 7-5.

import time

import arrow

from mptpkg import print_say

def timer(v_inp):
 # Find the positions of "timer for" and "hour" and "minute"
 pos1= v_inp.find("timer for")
 pos2= v_inp.find("hour")
--snip--
 print_say("Your timer will go off at "+end_time)
--snip--
 print_say("Your timer has gone off!")
--snip--

Listing 7-5: The script for the local mytimer module

Set the Timer
Now you’ll test the first functionality of your VPA. Let’s zoom in to the part
where you can activate the timer in your VPA script:

--snip--
from mptpkg import timer
--snip--
 # Activate the timer
 elif "timer for" in inp and ("hour" in inp or "minute" in inp):
 timer(inp)
 continue
--snip--

144 Chapter 7

First, we’ve imported the timer() function to the script. Second, the elif
branch between the if branch and else branch in the inner while loop is
where you can set a timer.

If you run vpa.py, it will start in standby mode. You can wake it up by
saying, “Hello Python.” Then you can set a timer by saying, “Set a timer for
1 hour 20 minutes” or “Set a timer for 2 hours.”

The following output is from one interaction with the script, with my
voice input in bold:

hello Python
How may I help you?
set a timer for 1 minute
You just said set a timer for 1 minute
Your timer will go off at 21:37:46
Your timer has gone off!
How may I help you?
--snip--

As you can see, I first activate the VPA and then set a timer for one min-
ute. The VPA tells me, “Your timer will go off at 21:37:46.” After one minute,
the timer goes off.

T RY IT OU T

Run VPA.py, wake the VPA up, and set the timer to go off in two minutes. After
the timer goes off, ask the VPA to go back to standby.

 Ask Your VPA to Set an Alarm Clock
Now you’ll learn how to ask your VPA to set an alarm clock. You’ll first use
written commands to set the alarm clock. You’ll then create a myalarm mod-
ule, in which you define an alarm() function. Finally, you’ll import alarm() to
the VPA script to set the alarm clock by using voice commands.

Build an Alarm Clock
Building an alarm clock is similar to setting a timer, except that we specify
the time the alarm should go off rather than saying it should go off a certain
time from now. You can either specify an hour value alone, such as 8 PM, or
an hour and minute value, such as 7:25 AM.

The script will take written commands for now. The script alarm_clock.py
is shown in Listing 7-6.

import time

import arrow

Building a Virtual Personal Assistant 145

Tell you the format to set the timer
print('''set your alarm clock\nyou can use the format of:\n
 \tset an alarm for 7 a.m., or
 \tset an alarm for 2:15 p.m.''')
Set the alarm
1 inp = input("What time would you like to set your alarm for?\n")
Find the positions of the four indicators
1 p1 = inp.find("alarm for")
p2 = inp.find("a.m.")
p3 = inp.find("p.m.")
p4 = inp.find(":")
Handle the four different cases
2 if p2 != -1 and p4 != -1:
 inp=inp[p1+len("alarm for")+1:p2]+"AM"
elif p3 != -1 and p4 != -1:
 inp=inp[p1+len("alarm for")+1:p3]+"PM"
elif p2 != -1 and p4 == -1:
 inp=inp[p1+len("alarm for")+1:p2-1]+":00 AM"
elif p3 != -1 and p4 == -1:
 inp=inp[p1+len("alarm for")+1:p3-1]+":00 PM"
print(f"OK, your alarm will go off at {inp}!")
3 while True:
 # Obtain time and change it to "7:25 AM" format
 tm = arrow.now().format('h:mm A')
 time.sleep(5)
 # If the clock reaches alarm time, the alarm clock goes off
 if inp == tm:
 print("Your alarm has gone off!")
 break

Listing 7-6: The script to set an alarm clock

First, the script captures our written input and saves it as the string vari-
able inp. We then look for the positions of the four indicators: alarm for, a.m.,
p.m., and : 1. If you include the colon in your input, the script knows to
check for a minute value.

Depending on what you pass at 2, one of four scenarios results:

•	 You input a.m. and specify hour and minute values. We extract the pre-
set time value between set alarm for and a.m., convert it to a string, and
add AM at the end. For example, if you input set an alarm for 7:34 a.m.,
the returned string value is 7:34 AM.

•	 You input p.m. and specify the hour and minute value. We extract the
preset time value, convert it to a string, and add PM at the end. For
example, if you input set an alarm for 2:55 p.m., the returned string
value is 2:55 PM.

•	 You input a.m. but specify only an hour value. We extract the preset time
value, convert it to a string, and add :00 AM at the end. For example, if
you input set an alarm for 7 a.m., the returned string value is 7:00 AM.

•	 You input p.m. but specify only an hour value. We extract the preset time
value, convert it to a string, and add :00 PM at the end. For example, if
you input set an alarm for 3 p.m., the returned string value is 3:00 PM.

146 Chapter 7

Once we’ve extracted the time when the alarm should go off, we start
an infinite loop 3. At each iteration, we check the current time every five
seconds in the 7:25 AM format.

Finally, we check whether the time we set for the alarm clock matches
the current time. If the times match, the alarm clock goes off, and the script
prints Your alarm has gone off!.

Run the script and use it to set an alarm clock for yourself. Try all four
cases: with and without the minute value, with either a.m. or p.m. at the end.
Next, we’ll create an alarm clock module based on this script.

Create the Alarm Clock Module
Now we’ll create the alarm() function that will use the alarm_clock.py code.
This code will take voice input instead of written input and give both voice
and text output.

Open myalarm.py, which you just downloaded from the book’s resources
website, and open it in your Spyder editor. The script will define the func-
tion alarm() that your VPA will use, shown in Listing 7-7.

import time

import arrow

from mptpkg import print_say

Define the Alarm() function
def alarm(v_inp):
 # Find the positions of the four indicators
 p1 = v_inp.find("alarm for")
--snip--

Listing 7-7: The script for the local myalarm module

Set an Alarm
Now you can ask your VPA to set an alarm clock for you. Let’s zoom in on
the part of vpa.py that can set an alarm clock:

--snip--
from mptpkg import alarm
--snip--
 # Activate the alarm clock
 elif "alarm for" in inp and ("a.m." in inp or "p.m." in inp):
 alarm(inp)
 continue
--snip--

First, we’ve imported the alarm() function in the local myalarm module
to the script from the self-made package mptpkg. Second, an elif branch is
in the inner while loop, where you can activate the alarm clock by including
alarm for and either a.m. or p.m. in your voice command.

Building a Virtual Personal Assistant 147

Run vpa.py. You can set an alarm clock after waking up your VPA. The
following output is from one interaction with the script, with my voice input
in bold:

hello Python
How may I help you?
set an alarm for 8:38 a.m.
You just said set an alarm for 8:38 a.m.
OK, your alarm will go off at 8:38 AM!
Your alarm has gone off!
How may I help you?
--snip--

T RY IT OU T

Run vpa.py, wake up your VPA, and set an alarm clock to go off in one minute.

 Ask Your VPA to Tell a Joke
In this section, you’ll learn how to ask your VPA to tell a joke. You’ll find a
good joke list to pull from, then create a joke module and import it to your
main script so that your VPA can tell you jokes in a human voice.

Create Your Joke List
You can create a joke list from many resources. I’m using the Quick, Funny
Jokes! website (https://www.quickfunnyjokes.com/math.html).

I selected 15 jokes and saved them in a file called jokes.txt in the chapter
folder /mpt/ch07/ on my computer. You can use as many jokes as you like, as
long as you also save them in a separate text file as we are doing here. Here
are my 15 jokes:

There are three kinds of people in the world—those who can count and those who
can't.

Without geometry, life is pointless.

Write the expression for the volume of a thick-crust pizza with height "a" and
radius "z".

Two random variables were talking in a bar. They thought they were being
discrete, but I heard their chatter continuously.

3 out of 2 people have trouble with fractions.

Parallel lines have so much in common . . . it's a shame they'll never meet.

Math is like love; a simple idea, but it can get complicated.

https://www.quickfunnyjokes.com/math.html

148 Chapter 7

Dear Math, please grow up and solve your own problems; I'm tired of solving
them for you.

Dear Algebra, Please stop asking us to find your X. She's never coming back,
and don't ask Y.

Old mathematicians never die; they just lose some of their functions.

I strongly dislike the subject of math; however, I am partial to fractions.

Zenophobia is the irrational fear of convergent sequences.

Philosophy is a game with objectives and no rules. Mathematics is a game with
rules and no objectives.

Classification of mathematical problems as linear and nonlinear is like
classification of the universe as bananas and non-bananas.

A circle is just a round straight line with a hole in the middle.

Next, you’ll learn in detail how to create the joke-telling module.

Create a Joke Module
In this section, you’ll create a joke() function. When the function is called,
it will go to the file jokes.txt on your computer, access its content, and break
it into individual jokes and put them in a list. It will then randomly select a
joke from the list and read it out loud to you.

We’ll import the script myjoke.py, shown in Listing 7-8, as a local module
in your VPA.

1 import random

from mptpkg import print_say

Define the joke() function
2 def joke():
 # Read the content from the file jokes.txt
 with open('../ch07/jokes.txt','r') as f:
 content = f.read()
 # Split the content at double line breaks
 3 jokelist = content.split('\n\n')
 # Randomly select a joke from the list
 joke = random.choice(jokelist)
 print_say(joke)

Listing 7-8: The script to create a joke module

First, we import the random module, which we’ll use to randomly select
a joke from the list. At 1, we start the definition of joke().

Building a Virtual Personal Assistant 149

We then read the content from jokes.txt and put the content in the string
variable content 2. Note that since we put jokes.txt in a different directory
from the module script myjoke.py, we need to specify the path of the file,
and ../ch07/ tells Python that the file is in a parallel folder called mptpkg.
This way, we can use the joke-telling functionality in other chapters as well,
which we will do in Chapter 17.

We know that individual jokes are separated by double line breaks, so
we use split() to separate the content of the file into individual strings and
put them in the list jokelist 3. We then randomly select a joke by using
choice() from the random module. Finally, the script prints out and speaks
aloud the selected joke.

Tell a Joke
Now you’ll import the joke module you just created to your VPA so that it can
tell you jokes in a human voice. Let’s zoom in on the part of vpa.py that can tell
a joke:

--snip--
from mptpkg import joke
--snip--
 # Activate the joke-telling functionality
 elif "joke" in inp and "tell" in inp:
 joke()
 continue
--snip--

We first import the joke() function in our newly made myjoke module
from the local mptpkg package. In the inner while loop section of the VPA
code is an elif branch, in which we tell the VPA that if tell and joke are in
your voice command, the joke-telling functionality is activated.

Here’s the outcome from one interaction with the script vpa.py, with my
input in bold:

hello Python
How may I help you?
tell me a joke
You just said tell me a joke
I strongly dislike the subject of math; however, I am partial to fractions.
How may I help you?
--snip--

T RY IT OU T

The HuffPost website has a list of motivational quotes: https://www.huffpost
.com/entry/100-motivational-quotes-t_b_4505356/. Create a quote module
to provide you with uplifting quotes, similar to the joke module you created.

https://www.huffpost.com/entry/100-motivational-quotes-t_b_4505356/
https://www.huffpost.com/entry/100-motivational-quotes-t_b_4505356/

150 Chapter 7

 Send Hands-Free Email
In this section, we’ll examine the functionality of sending email 100 percent
hands-free. You’ll first learn how to send an email by using written com-
mands in Python; this will give you the skill set to create an email module
that takes voice commands. After that, you’ll import the email module to
your VPA so you can send email with your voice.

Send Email with Written Commands
Before moving on, you need to prepare a few things.

First, you need an email account from which to send email via Python.
This example uses my Gmail account, ukmarkliu@gmail.com, which you
should replace with your own email address.

Gmail and many other email providers require you to apply for a separate
application password, which is different from your regular email password.
For example, the Google Account Help page shows how to set up your Gmail
app password; see https://support.google.com/accounts/answer/185833/.

Sending email in Python requires a few steps. You’ll first need to con-
nect to your email provider’s Simple Mail Transfer Protocol (SMTP) server.
SMTP is an internet standard for sending email. Once the connection is
established, you’ll need to log in using your email address and password.
You’ll then provide the recipient’s email address, the subject line, and the
email content. Finally, you’ll ask Python to send the actual email.

The smtplib module is in the Python standard library, so no installation
is needed. You also need at least one email as the recipient’s address. You
can use another one of your own email addresses or ask for a friend’s.

The script emails.py can take your written commands and send out
email using Python, as shown in Listing 7-9.

import smtplib

Build a dictionary of names and emails
emails = {'mark':'mark.liu@uky.edu',
 'sarah':'Sarah email address here',
 'chris':'Chris email address here'}
Different email providers have different domain names and port numbers
1 mysmt = smtplib.SMTP('smtp.gmail.com', 587)
mysmt.ehlo()
mysmt.starttls()
Use your own login info; you may need an app password
mysmt.login('ukmarkliu@gmail.com', '{Your password here}')
Ask for the name of the recipient
2 name = input('Who do you want to send the email to?\n')
email = emails[name]
print(f"You just said {name}.")
Ask for the subject line
subline = input('What is the subject line?\n')
print(f"You just said {subline}.")
Ask for the email content
content = input('What is the email content?\n')
print(f"You just said {content}.")

https://support.google.com/accounts/answer/185833/
mailto:ukmarkliu@gmail.com

Building a Virtual Personal Assistant 151

Send the actual email
3 mysmt.sendmail('ukmarkliu@gmail.com', email,
 f'Subject: {subline}.\nHello, {content}.')
{}
print('Ok, email sent')
mysmt.quit()

Listing 7-9: The script to send an email using Python

We import the smtplib module and create a dictionary emails to match
names with email addresses. This way, when you type in a person’s name,
the script will retrieve the corresponding email from the dictionary.

At 1, we connect to the Gmail SMTP. If you aren’t using Gmail, you’ll
need to search for the domain name and port number of your email pro-
vider. No change is needed if you are using Gmail.

We then start the communication with your email server and the
Transport Layer Security (TLS) encryption. The TLS encryption is needed
by the script for security reasons. Once the connection is established, you
need to log in using your email address and password, so make sure to
replace ukmarkliu@gmail.com with your own email address. I’ve blocked out
my Gmail password in the code.

The script then requests several pieces of information in order to send
the email 2. It first requests the name of the recipient, which you must
already have stored in the dictionary emails for the script to retrieve. With
the name, the script retrieves the email from the dictionary. It will then also
ask you for the email subject line and email content, which you enter in the
IPython console at the lower-right corner of your computer screen.

At 3, we send out the email with sendmail(), which takes three inputs:
your email address; the recipient’s email address; and the subject line and
the email content, separated by the line break escape character \n.

Once done, the script will confirm that the email has been sent. Try
this script yourself and make sure that you can send email using Python.

Next, we’ll create the module to send email using Python and then add
it to your VPA.

Create the Email Module
We first need to create the script myemail.py to use as a local module in
your VPA. In the module, we define an email() function. Once called, it
will connect to your email server and ask you for voice inputs—the recipi-
ent’s name, the subject line, and the email content—before sending out
the actual email.

The content of myemail.py is similar to that of emails.py, with a few dif-
ferences: the script will ask you for input using voice as well as printed
messages, and you need to use voice input instead of written input. The
differences are highlighted in Listing 7-10.

--snip--
from mptpkg import voice_to_text, print_say

152 Chapter 7

Define the email() function
def email():
 # Build a dictionary of names and emails
--snip--
 # Voice input the name of the recipient
 print_say('Who do you want to send the email to?')
 name = voice_to_text().lower()
 email = emails[name]
 print_say(f"You just said {name}.")
 # Voice input the subject line
 print_say('What is the subject line?')
 subline = voice_to_text()
 print_say(f"You just said {subline}.")
 # Voice input the email content
 print_say('What is the email content?')
 content = voice_to_text()
 print_say(f"You just said {content}.")
 # Send the actual email
 mysmt.sendmail('ukmarkliu@gmail.com', email,
 f'Subject: {subline}.\nHello, {content}.')
 {}
 print_say('Ok, email sent.')
 mysmt.quit()

Listing 7-10: The script to create a local myemail module

As you can see, you need to import voice_to_text() from your local
mptpkg package to capture your voice input to dictate the recipient’s name,
email subject line, and content. You also need print_say() from your local
mptpkg package to print and speak messages.

Now the module is ready to be imported to the VPA script.

Add the Email Functionality
Next, you need to import email() from myemail.py into your VPA so that you
can send email 100 percent hands-free. Let’s zoom in to the part of vpa.py
that can send an email:

--snip--
from mptpkg import email
--snip--
 # Activate the email-sending functionality
 elif "email" in inp and "send" in inp:
 email()
 continue
--snip--

We import the email() function in the local myemail module from the
local mptpkg package. There’s an elif branch in which you can activate the
email-sending feature.

Building a Virtual Personal Assistant 153

Here’s an example interaction with vpa.py, with my voice input in bold.
All output is printed as well as spoken out loud.

hello Python
How may I help you?
send an email
You just said send an email
Who do you want to send the email to?
mark
You just said mark.
What is the subject line?
this is from python
You just said this is from python.
What is the email content?
this email is sent using the Python programming language
You just said this email is sent using the Python programming language
Ok, email sent
How may I help you?
--snip--

First, you should wake up your VPA. After you say, “Send an email,” the
email feature is activated. The VPA then asks you for the recipient’s name—
I gave my own name, and my University of Kentucky (UKY) email address
was matched to it. It also asks for the subject line and email content. Once
the information is collected, the email is sent, and the script exits the email
functionality.

Figure 7-1 shows the email I received as a result in my UKY email
account.

Figure 7-1: An email sent using a Python script 100 percent hands-free

T RY IT OU T

Put your own email account and password in myemail.py. Then place a legiti-
mate email in the dictionary emails. Wake up your VPA and ask it to send an
email to one of your friends.

154 Chapter 7

 Summary
In this chapter, you learned how to create a VPA that can set an alarm and
timer, tell jokes, and even send email hands-free! You wake your VPA with
“Hello Python” and then give it an instruction to activate one of the four
functionalities. This chapter taught you how to create a new feature, make it
into a local module, and use it in your main script.

In the next chapter, you’ll learn how to use the WolframAlpha API to
tap into the vast knowledge space on the website so that your VPA will be
able to answer (almost) any question.

 End-of-Chapter Exercises

1. Write a script to print out a message and speak aloud today’s date and
time, formatted as “Today is September 8, 2021, and the time now is
09:03:07 AM.”

2. Modify mywakeup.py so that the only way to end the script vpa.py is by
saying, “Quit the script.”

8
K N O W - I T - A L L V P A

The VPA we created in Chapter 7 can set
a timer or an alarm clock for you, tell you

jokes, or send your email. Now we’ll upgrade
it so you can ask it about nearly anything—

including daily news and weather, gas prices, and
travel information—and tap into its nearly unlimited
knowledge of science, math, history, and society.

In this chapter, you’ll access the storehouse of information in the
computational engine WolframAlpha and use Wikipedia as a backup if
WolframAlpha can’t provide an answer. If neither site can answer, your
VPA will tell you, “I am still learning, and I don’t know the answer to that
yet.” Your VPA will be complete and capable of answering almost any
question.

Before you begin, set up the folder /mpt/ch08/ for this chapter. As
always, all scripts in this chapter are available at the book’s resources page.

156 Chapter 8

NE W SKIL L S

• Using APIs with your Python code

• Exploring areas of knowledge in WolframAlpha

• Using try and except to use one source as the backup of another source

• Creating a know-it-all functionality for your VPA

 Get Answers from WolframAlpha
WolframAlpha is a computational knowledge engine that provides an online
service for factual queries, with a focus on numerical and computational
capabilities, especially in the areas of science and technology. In this sec-
tion, you’ll learn how to get answers from WolframAlpha through its API
and then write a Python script to retrieve information.

Apply for an API Key
The first step is to apply for an API key. WolframAlpha gives you up to 2,000
noncommercial API calls per month at no charge. Go to https://account.wolfram
.com/login/create/ and complete the steps to create an account, as shown in
Figure 8-1.

N O T E The WolframAlpha website is subject to change. What you see, and the API applica-
tion process, may be slightly different from the instructions here. Please follow the
instructions you find at the website.

Figure 8-1: Create your free Wolfram ID.

https://account.wolfram.com/login/create/
https://account.wolfram.com/login/create/

Know-It-All VPA 157

Click Create Wolfram ID and then log in. The Wolfram ID itself gives
you only browser access, so you need to get an AppID to gain query access
using Python. Apply for an API at https://products.wolframalpha.com/api/ and
click Get API Access in the bottom left, as shown in Figure 8-2.

Figure 8-2: Apply for an API at WolframAlpha.

A small dialog should pop up, as shown in Figure 8-3.

Figure 8-3: The Get a New AppID window at WolframAlpha

Fill in the Application name and Description information, then click
Get AppID. For example, you might enter Virtual assistant as the applica-
tion name and Learn to build my own virtual personal assistant in Python in
the description field.

After that, your AppID should appear in a pop-up window. You
need to click OK to activate the AppID. The key will be a long, unique
string of characters to distinguish you from other users, something like
HG**************YQ (I’ve blocked out the middle characters). Save your
AppID in a safe place; you’ll need it later.

https://products.wolframalpha.com/api/

158 Chapter 8

N O T E Don’t simply copy and try to use your AppID in Python before clicking the OK button
on the pop-up window. Your AppID is not activated unless you click the OK button.

Retrieve Information
Once you have your WolframAlpha API, you can use a Python script to send
queries and obtain answers from WolframAlpha. You must first install the
third-party wolframalpha module on your computer. Go to your Anaconda
prompt (Windows) or a terminal (Mac or Linux) and activate the virtual
chatting environment; then run the following at the command line:

pip install wolframalpha

Follow the instructions to finish the installation.
The wolfram.py script in Listing 8-1 retrieves information from

WolframAlpha by using text input.

Import the wolframalpha module
import wolframalpha

Enter your own WolframAlpha APIkey below
APIkey = "{your WolframAlpha APIkey}"
wolf = wolframalpha.Client(APIkey)
Enter your query
1 inp = input("What do you want to know from WolframAlpha?\n")
Send your query to WolframAlpha and get a response
2 response = wolf.query(inp)
Retrieve the text from the response
res = next(response.results).text
Print out the response
print(res)

Listing 8-1: Python code for the script wolfram.py

We first import the wolframalpha module. Enter the API key you retrieved
earlier as the value of the APIkey variable. Without it, the script won’t work.

We then create the client with your AppID. At 1, the script asks the
user for a query to send to WolframAlpha, which the user will enter in the
IPython console at the lower-right panel of the Spyder IDE.

At 2, we send the query to WolframAlpha and retrieve the result object,
saving it in the variable response. The result object contains a collection of
results in a generator object. Generator functions are a convenient shortcut
to building iterators, sometimes used to avoid keeping large amounts of
data in short-term memory (RAM). You can learn more about generators
from authoritative online sources (for example, https://wiki.python.org/moin/
Generators). This is why we use the built-in function next() to iterate through
different answer groups from WolframAlpha in the result object and obtain

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators

Know-It-All VPA 159

the text part of the answer. For a detailed description of how the query-
ing process works with the wolframalpha module, see https://pypi.org/project/
wolframalpha/. Finally, the extracted text is printed out.

Here’s a simple exchange with wolfram.py, with my text input in bold:

What do you want to know from WolframAlpha?
How many states are in the USA?
50

As you can see, WolframAlpha has given me a correct and succinct
answer.

Explore Different Areas of Knowledge
WolframAlpha can provide information on a variety of topics, so we’ll put
wolfram.py through its paces with questions about weather, general knowl-
edge, science, and math before adding the API to your VPA.

Real-Time Information

WolframAlpha provides real-time information, such as the current tempera-
ture in your area. Here’s one interaction with the script wolfram.py, with my
written input in bold:

What do you want to know from WolframAlpha?
What is the temperature outside right now?
87 °F
(2 hours 21 minutes ago)

The script tells you the temperature in Fahrenheit and the length of
time that has passed since the information was obtained. WolframAlpha
gets your local information by looking at the location associated with your
IP address. If you have an active virtual private network (VPN), your local
information will be for the location of your VPN provider.

You can also obtain a weather forecast for a specific day in a certain
location like so:

What do you want to know from WolframAlpha?
What is the weather forecast for Chicago in 2 days?
between 70 °F and 74 °F
rain (very early morning) | clear (all day)

You can check other real-time information such as local gas price or US
inflation rate:

What do you want to know from WolframAlpha?
What is the current gas price?
$2.548/gal (US dollars per gallon) (Monday, February 8, 2021)

https://pypi.org/project/wolframalpha/
https://pypi.org/project/wolframalpha/

160 Chapter 8

T RY IT OU T

Use wolfram.py to find out the following:

• The temperature where you live

• The population of the state you are in

• The gas price in your area

General Questions

You can ask general knowledge questions, such as how many teaspoons are
in a cup, how to convert Fahrenheit to Celsius, the regional sales tax rate, a
state capital, and so on:

What do you want to know from WolframAlpha?
How many yards are in a mile?
1760 yards

What do you want to know from WolframAlpha?
What's the capital of West Virginia?
Charleston, West Virginia, United States

What do you want to know from WolframAlpha?
What is the calorie expenditure walking an hour at 5 miles per hour?
energy expenditure | 366 Cal (dietary calories)
fat burned | 0.1 lb (pounds)
oxygen consumption | 19.3 gallons
metabolic equivalent | 4.8 metabolic equivalents
(estimates based on CDC standards)

What do you want to know from WolframAlpha?
What is the speed of light?
2.998×10^8 m/s (meters per second)

WolframAlpha has gathered information from various sources such as
the CIA’s The World Fact Book and The United States Geological Survey, so it has
comprehensive historical data. You can ask questions about events, people,
or facts, such as when the vehicle airbag was invented:

What do you want to know from WolframAlpha?
When was the airbag invented
1941

You can even use WolframAlpha as a dictionary by using define, like so:

What do you want to know from WolframAlpha?
Define obliterate
1 | verb | mark for deletion, rub off, or erase

Know-It-All VPA 161

2 | verb | make undecipherable or imperceptible by obscuring or concealing
3 | verb | remove completely from recognition or memory
4 | verb | do away with completely, without leaving a trace
5 | adjective | reduced to nothingness
(5 meanings)

T RY IT OU T

Use wolfram.py to find out the following:

• The number of liters in a gallon

• The capital of the state you are in now

• The meaning of the word diligence

• The net worth of Bill Gates

• The countries that participated in World War I

Math Calculations

WolframAlpha can answer your questions in the fields of mathematics,
science, and technology, ranging from elementary math to calculus to
differential equations.

For example, if you want to convert 125 to binary, you can use wolfram.py
as follows:

What do you want to know from WolframAlpha?
convert 125 to binary
1111101_2

The 2 at the end of the output indicates that the response is in binary
format. Wolfram Alpha can also answer your personal finance questions on
topics such as mortgage payments, credit card calculations, and state taxes.
For example, to calculate your monthly mortgage payment, you just need to
provide three pieces of information—loan amount, interest rate, and loan
term—and you’ll get the answer:

What do you want to know from WolframAlpha?
mortgage $150,000 6.5% 30 years
monthly payment | $948

Using the keyword mortgage, you tell the script the loan amount $150,000,
the interest rate 6.5%, and the term 30 years. Know that the formatting of
your query doesn’t really matter—you don’t need a comma in the number
and you could provide the arguments in any order, and the script should
understand.

162 Chapter 8

T RY IT OU T

Use wolfram.py to find the following:

• The monthly mortgage payment if the loan amount is $350,000, the inter-
est rate is 3%, and the term is 15 years

• The state sales tax rate where you live

• All the prime numbers below 100

• The heaviest metal in the periodic table

 Add a Know-It-All Functionality to Your VPA
Our goal here is to add a know-it-all functionality to the VPA you created in
Chapter 7. We will rely mainly on WolframAlpha to answer your questions,
but there are questions WolframAlpha can’t answer. In that case, we’ll search
in Wikipedia. If Wikipedia can’t provide an answer either, the VPA will let
you know that it doesn’t have an answer.

To make use of the next script, be sure to install the following package
with your virtual environment activated:

pip install wikipedia

What WolframAlpha Cannot Answer
Even though WolframAlpha has a vast knowledge base, it doesn’t know
the answers to all questions. Wikipedia can provide more answers than
Wolfram Alpha in certain areas, especially for general reference questions.
For example, if you enter University of Kentucky as a query in wolfram.py,
the script will raise a StopIteration exception. This is because next() cannot
find a result in any answer group.

On the other hand, if you run the script wiki.py from Chapter 5 and
enter University of Kentucky as a query, you’ll get the following output:

The University of Kentucky (UK) is a public university in Lexington,
 Kentucky. Founded in 1865 by John Bryan Bowman as the Agricultural and
 Mechanical College of Kentucky
--snip--

Wikipedia can’t answer all your questions, either. For example, if you
enter how many people live outside the earth as a query in wiki.py, the API will
raise a PageError exception that causes this version of the script to abruptly
end with an error status.

We’ll improve our VPA by writing a script that queries WolframAlpha
first and, if no results are found, will query Wikipedia. If you can’t get an
answer there, the script will print out the message I am still learning. I

Know-It-All VPA 163

don't know the answer to your question yet. We’ll handle the errors raised by
these external APIs by enclosing the calls in a try block and handling the
exceptions in an except block.

Go to the book’s resources page, download know_all.py, and save it in
your chapter folder. This script is shown in Listing 8-2.

import wolframalpha
import wikipedia

You must put your WolframApha APIkey below
1 APIkey = "{your WolframAlpha appID here}"
wolf = wolframalpha.Client(APIkey)

while True:
 # Put your question here
 Inp = input("What do you want to know?\n")
 # Stop the loop if you type in "done"
 if inp == "done":
 break
 # Look for answer in Wolfram Alpha
 res = wolf.query(inp)
 # Use try and except to handle errors
 try:
 print(next(res.results).text)
 except:
 # If no answer, try Wikipedia
 try:
 ans = wikipedia.summary(inp)
 print(ans[0:200])
 except:
 # If still no answer
 print('I am still learning. I don\'t know the answer to your
question yet')

Listing 8-2: Python code for the script know_all.py

We first import the two modules wolframalpha and wikipedia. At 1, you
should put your own WolframAlpha AppID in the script for it to work. We
then put the script in an infinite while loop. At each iteration, it takes your
text input as a query. If you key in the word done, the while loop stops and
the script ends.

The script sends the query first to WolframAlpha. We use try and
except to handle any errors that the API from WolframAlpha might raise.
If Wolfram Alpha doesn’t return an answer, the script directs the same
query to Wikipedia. If there’s no answer found from Wikipedia, the script
prints I am still learning. I don't know the answer to your question yet.

Now, if you run the script know_all.py and enter University of Kentucky
and How many people live outside the earth? as the two queries, you’ll get the
following output:

What do you want to know?
University of Kentucky
The University of Kentucky (UK) is a public university in Lexington, Kentucky.

164 Chapter 8

Founded in 1865 by John Bryan Bowman as the Agricultural and Mechanical
College of Kentucky, the university is one of the

What do you want to know?
How many people live outside the earth?

I am still learning. I don't know the answer to your question yet

What do you want to know?
done

As you can see, the script never crashes, and it provides a result for the
first query but not the second.

T RY IT OU T

Try asking three questions by using the two scripts wiki.py and wolfram.py: one
with an answer in WolframAlpha, one with an answer in Wikipedia but not
WolframAlpha, and one with an answer in neither. Run the script know_all.py,
enter the three questions as queries, and see what happens.

Create the myknowall Module
Now we’ll create the know_all() function that will use the script myknowall.py,
but this time will take voice commands instead of written commands and will
both print and speak the response instead of just printing out messages.

Download myknowall.py from the book’s resources and save it in your
local package folder /mpt/mptpkg/. Since we’ll use this as one of the local
modules in the local package, be sure to save it in the local package folder
instead of the chapter folder. The script will define the function know_all()
that your VPA will use, shown in an abbreviated format in Listing 8-3.

--snip--
Import the print_say() function from the local package
from mptpkg import print_say
--snip--
def know_all(v_inp):
 #look for answer in Wolfram Alpha
 res = wolf.query(v_inp)
--snip--
 print_say('I am still learning. I don\'t know the answer to your
question yet')

Listing 8-3: The script for the local myknowall module

The content of know_all() is similar to the script know_all.py except that
the input and output include voice.

Know-It-All VPA 165

A VPA That Can Answer (Almost) Any Question for You
Now you’ll make your VPA capable of answering (almost) any question,
using the know_all.py module.

First, open the script __init__.py in the package directory /mpt/mptpkg/
on your computer. Add the following line of code at the end of the file and
save the change:

from .myknowall import know_all

This code imports know_all() from the myknowall module to the local
package so you can later import it at the package level.

Next, open vpa.py from the previous chapter, add the following to the
script, and save it as vpa.py in this chapter’s folder. You’ll need to delete the
original else branch in the inner while loop and replace it with the following:

Import the know_all() function from the local package
from mptpkg import know_all
--snip--
 # Activate the Know-It-All functionality
 else:
 if len(inp)>6:
 know_all(inp)
 continue
--snip--

We import know_all() from the local mptpkg package and replace the
original else branch. In vpa.py in Chapter 7, if none of the four function-
alities is activated, the script goes to the next iteration. In the new script
vpa.py, if none of the four functionalities is activated, the know-it-all
functionality is activated, and by default the script searches for answers
in WolframAlpha and Wikipedia.

Note here that we’ve added a condition if len(inp)>6 before we call
know_all(). Without the condition, if you don’t say anything for a long
period of time, the script treats the input as an empty string. As a result,
you’ll keep hearing the answer I am still learning. I don't know the answer
to your question yet. With the condition, if you don’t say anything, the
script goes to the next iteration without doing anything because the
length of an empty string is 0.

Run vpa.py and wake it up by saying, “Hello Python.” After that, you can
ask any question you want. Here’s the output from an example interaction
with the script, with my voice input in bold:

hello Python
how may I help you?
who was us president in 1981
you just said who was us president in 1981
Jimmy Carter (from January 20, 1977 to January 20, 1981)
Ronald Reagan (from January 20, 1981 to January 20, 1989)

how may I help you?
coronavirus

166 Chapter 8

you just said coronavirus
Coronaviruses are a group of related RNA viruses that cause diseases in
mammals and birds. In humans, these viruses cause respiratory tract infections
that can range from mild to lethal. Mild illness
--snip--

As you can see, after activating the VPA, I first asked who the US presi-
dent was in 1981. The answer includes two presidents, because the transi-
tion of power was in January 1981. After that, I asked about the coronavirus.
The VPA provided a detailed answer to the question.

N O T E The condition if len(inp)>6 means your query must contain at least seven charac-
ters. You can change the cutoff value in the condition from 6 to a smaller number
such as 5 or 3 if you want know_all() to be called even if you send a short query such
as “wolf” or “Python.”

T RY IT OU T

Run vpa.py, wake it up, and ask via voice the same three questions you used in
the preceding Try It Out on page 164, and see what happens.

 Summary
In this chapter, you upgraded the VPA from Chapter 7 so you can ask it just
about anything—including for up-to-date information about weather, gas
prices, and travel conditions, as well as nearly unlimited facts about science,
math, history, and society.

You learned to apply for an API and gain access to the vast knowledge
base in the computational engine WolframAlpha, and you can use Wikipedia
as a backup when WolframAlpha can’t provide an answer. If neither site can
answer, your VPA tells you as much. With that, your VPA is complete and
capable of answering almost any question for you. Using APIs like this is an
incredibly powerful skill.

In the next couple of chapters, you’ll learn how to create your own
voice-controlled graphical games that can speak to you.

PART III
I N T E R A C T I V E G A M E S

9
G R A P H I C S A N D A N I M A T I O N W I T H

T H E T U R T L E M O D U L E

Our goal in the next few chapters is to
build voice-controlled graphical games such

as tic-tac-toe, Connect Four, and guess-the-
word. You’ll do all these with the turtle module.

In this chapter, you won’t be working with voice interactivity. Instead
you’ll learn the turtle module’s basic commands that will let you set up a
turtle screen, draw shapes, and create animations. This functionality will be
the basis for all the games you’ll be building.

Before you begin, set up the folder /mpt/ch09/ for this chapter. As
always, all scripts in this chapter are available at the book’s resources page,
https://www.nostarch.com/make-python-talk/.

https://www.nostarch.com/make-python-talk/

170 Chapter 9

NE W SKIL L S

• Getting started with the turtle module

• Learning movements such as forward/backward and right/left turns

• Creating basic shapes such as dots, triangles, rectangles, and gridlines

• Creating animation effects

• Using multiple turtles

 Basic Commands
The turtle module allows us to use a robotic turtle to draw shapes and cre-
ate animations on a canvas. The turtle mimics the way people draw on a
physical canvas, but we use commands to move the turtle and create the
drawings.

For its underlying graphics, the turtle module uses the tkinter module,
which is Python’s de facto standard graphical user interface (GUI) package.
Both turtle and tkinter are in the Python standard library, so there’s no need
to install them.

Turtle graphics were invented in the 1960s, three decades before the
Python language. The turtle module allows Python programmers to take
advantage of many features of turtle graphics. The first is their simplicity:
turtle is easier to learn than other game modules such as pygame or tkinter.
The turtle module is also intuitive, making it easy to create pictures and
shapes by manipulating the drawing pen on a canvas (that is, the screen).

The turtle module is also better suited to voice activation. Unlike other
game modules, which constantly run through a game loop too fast to cap-
ture voice commands, turtle scripts don’t need a game loop. This makes
voice-controlled games possible.

Create a turtle Screen
To use turtle, you need to create a turtle screen to contain all objects in the
script. The following script shows you a simple example of the turtle screen.
Enter the following lines of code in Spyder and save the script as set_up
_screen.py:

import turtle as t

1 t.Screen()
t.setup(600,500,100,200)
t.bgcolor('SpringGreen3')
2 t.title('Setting Up a Screen with Turtle Graphics')
t.done()
t.bye()

Graphics and Animation with the turtle Module 171

We import the turtle module and give it a short alias name, t. This is
one situation where a short alias module name is beneficial, since we’ll be
calling multiple functions from the module, and often. Therefore, we want
to use only t., instead of turtle., in front of all the functions.

At 1, we create a screen by using Screen(), which doesn’t require argu-
ments. We then use setup() to specify the size and location of the screen.
The four parameters are screen width, screen height, horizontal distance
from the top left of your computer screen, and vertical distance from the
top left of your computer screen, in that order. Our screen will be 600 pix-
els wide and 500 pixels tall, 100 pixels from the left edge of the computer
screen, and 200 pixels from the top edge.

Next, we give the turtle screen a background color by using bgcolor().
The turtle module provides a wide range of colors, including brown, black,
gray, white, yellow, gold, orange, red, purple, navy, blue, lightblue, darkblue, cyan,
turquoise, lightgreen, green, and darkgreen.

N O T E For a more comprehensive list of colors in the turtle and tkinter modules, see
https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm.

At 2, we give a title to the screen, which you’ll see at the top beside the
turtle graphics symbol (Figure 9-1).

The done() command tells the script to start the event, which is how
objects on the screen could be animated. The bye() command tells the
script to exit turtle when you click the X symbol.

The screen should look something like Figure 9-1.

Figure 9-1: Set up the size, background color, and title of the screen.

https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm

172 Chapter 9

A turtle screen uses a Cartesian coordinate system, with the center coor-
dinate (x = 0, y = 0). The x-value increases from left to right, and the y-value
increases from bottom to top, just like the two-dimensional plane you
learned in high school mathematics.

N O T E In turtle, the point (x = 0, y = 0) is at the center of the screen. This is different from
most other graphical modules such as pygame or tkinter, which have the point (x = 0,
y = 0) at the top-left corner.

Create Movements
In earlier days, the turtle cursor was literally a picture of a turtle moving
around on the screen. Now, instead of a literal turtle, you see a small arrow-
head as the default cursor. The turtle has three attributes: location, direction,
and a pen. You can adjust the color and width of the pen, and you can decide
whether to put the pen down on the plane so the turtle’s path is marked
when it moves or lift it up so the movement isn’t tracked.

Let’s see an actual drawing before looking at the various movements
in the module. Enter the code shown in Listing 9-1 in a Spyder editor and
save it as show_turtle.py in your chapter folder.

import turtle as t

t.Screen()
t.setup(600,500,100,200)
t.bgcolor('SpringGreen')
t.title('Show Turtle')
1 t.shape('turtle')
t.forward(200)
t.right(90)
t.up()
t.forward(100)
t.done()
t.bye()

Listing 9-1: Showing the turtle in the turtle module

At 1, we change the shape of the cursor back to the original turtle
shape, as you can see in Figure 9-2. If you run the script, you can see that
the turtle starts at position (x = 0, y = 0) and faces right. It moves forward
200 pixels with the default down pen position, so this movement draws a
line on the canvas. We turn the turtle right 90 degrees and lift up the pen
before moving forward 100 pixels. This time, no line is drawn on the canvas
since the drawing pen is not touching the canvas.

T RY IT YOURSEL F

Use the F9 key to run the code in show_turtle.py one line at a time. See the
changes in cursor shape, pen position, and cursor movements on the screen.

Graphics and Animation with the turtle Module 173

Figure 9-2: The turtle moves on the canvas to make a drawing.

Now we’ll discuss in detail some basic movements in the turtle module
that are useful for our projects.

The forward() and backward() Functions

The forward() function tells the turtle to move forward the specified number
of pixels on the screen. The backward() function does the same backward.
Enter the code shown in Listing 9-2 in a Spyder editor and save it as forward
_backward.py in your chapter folder.

import turtle as t

t.Screen()
t.setup(600,500,100,200)
t.bgcolor('blue')
t.title('Movements in Turtle Graphics')
1 t.forward(200)
2 t.backward(300)
t.done()
t.bye()

Listing 9-2: Basic movement functions in the turtle module

We set up the screen with a different background color and a title.
At 1, the turtle moves forward 200 pixels. The default starting position of
the turtle is at (x = 0, y = 0), facing to the right, so moving forward 200 pix-
els leads the turtle to the point (x = 200, y = 0).

174 Chapter 9

At 2, the turtle moves from the point (x = 200, y = 0) backward 300 pix-
els, ending up at (x = –100, y = 0).

T UR T L E A DJUS T MEN T S IN SPY DER

When you run turtle scripts in Spyder, the turtle scripts crash with a Terminator
error after multiple runs in the same IPython console instance. This is a known
problem for turtle scripts in Spyder. To avoid the crash and the error message,
we’ll use try and except for the remainder of the book, starting in the script
left_right.py.

The left() and right() Functions

The left() or right() function changes the direction the turtle is facing. As
the argument, we give the degree of the angle to move by. For example, 90
degrees turns the turtle perpendicular to the original direction. A degree
value of 360 turns the turtle in a full circle so it’s still going in the original
direction.

The script left_right.py in Listing 9-3 shows how the left() and right()
functions work.

import turtle as t

t.Screen()
t.setup(600,500,100,200)
t.bgcolor('light blue')
t.title('Python Turtle Graphics')
1 t.pensize(5)
2 t.right(30)
t.forward(200)
t.left(30)
t.backward(400)
t.left(90)
3 t.pencolor('red')
t.forward(200)
t.done()
try:
 t.bye()
except Terminator:
 print('exit turtle')

Listing 9-3: Python code for left_right.py

The pensize() function specifies the thickness of the line the turtle is
drawing 1. The default value is 1 pixel. Here we set the pen size to 5 pixels.
At 2, we tell the turtle to turn right 30 degrees. Then, we move the turtle
forward 200 pixels. We then turn the turtle left 30 degrees and move back-
ward 400 pixels.

Graphics and Animation with the turtle Module 175

The pencolor() function changes the color of the drawing pen to red 3.
The default is black. After this step, the lines will be red instead of black.

Run the script and you should see a screen similar to Figure 9-3.

Figure 9-3: The left() and right() functions in the turtle module

T RY IT OU T

Run left_right.py and then add more activity: change the pen color to green,
make a 90-degree right turn, and move forward 250 pixels.

The goto() Function

The goto() function tells the turtle to go to the specified point on the screen.
Together with up() and down(), it can create straight lines and dashed lines.
The up() function means the turtle pen is not touching the canvas and so
doesn’t draw as it moves. The down() function puts the pen on the canvas and
creates drawings.

If the turtle pen is in the down position, goto() will create a straight line
between the current position and the specified position. However, if the
turtle pen is in the up position, goto() will create nothing on the screen, but
merely moving the turtle from the current position to the specified posi-
tion. Dashed lines can be created by drawing a sequence of short lines with
spaces in between.

Enter the script create_lines.py in Listing 9-4.

import turtle as t

t.Screen()
t.setup(600,500,100,200)

176 Chapter 9

t.bgcolor('lightgreen')
t.title('Python Turtle Graphics')
t.pensize(6)
1 t.goto(200,100)
2 t.up()
t.pencolor('blue')
3 for i in range(8):
 t.goto(-200+50*i,-150)
 t.down()
 t.goto(-200+50*i+30,-150)
 t.up()
4 t.hideturtle()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 9-4: Python code for create_lines.py

At 1, we tell the turtle to go to (x = 200, y = 100). By default, the
turtle is in the down position and the starting position is (x = 0, y = 0), so
goto(200,100) draws a line between the two points (0, 0) and (200, 100), as
you can see in Figure 9-4.

At 2, the script tells the turtle to lift up the pen so that no line is drawn
on the screen when the turtle goes to another point. We then change the
pen color to blue. At 3, we start a for loop. In each iteration, the turtle goes
to a point, puts down the pen, and goes to another point 30 pixels to the
right. This leaves a 30-pixel-long dash, done eight times with gaps between.

The hideturtle() function hides the turtle so that the black arrow cur-
sor is not shown on the screen 4.

Run the script and you should see a screen similar to Figure 9-4.

Figure 9-4: Use the goto() function to create lines using the turtle module.

Graphics and Animation with the turtle Module 177

T RY IT OU T

Run create_lines.py and then add another eight-dash line 100 pixels above the
existing eight-dash line.

 Basic Shapes
The turtle module has several built-in shapes, including the commonly used
dot() function that creates a dot. You’ll also learn how to create basic shapes
such as a triangle, a square, and gridlines.

Use the dot() Function
The dot() function creates a dot with the specified diameter and color. For
example, the command dot(30,'red') creates a red dot with a diameter of
30 pixels. We’ll use this in our tic-tac-toe and Connect Four games to create
game pieces.

Listing 9-5, dots.py, shows how the dot() function works.

import turtle as t

t.Screen()
t.setup(600,500,100,200)
t.bgcolor('lightgreen')
t.title('Python Turtle Graphics')
1 t.up()
t.goto(150,100)
t.dot(120,'red')
t.goto(-150,100)
t.dot(135,'yellow')
2 t.goto(150,-100)
t.dot(125,'blue')
t.goto(-150,-100)
t.dot(140,'green')
t.hideturtle()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 9-5: Python code for dots.py

First we lift up the pen 1. Then we go to the point (150, 100). We tell
the turtle to put a red dot centered on the point (150, 100) and with a diam-
eter of 120 pixels.

178 Chapter 9

Next, we move the turtle to (–150, 100) and draw a yellow dot with a
diameter of 135 pixels. Note that you don’t need to use up() again since the
pen is already lifted up. With the pen up, the turtle can still draw dots.

Starting from 2, the turtle goes to (150, –100) and draws a blue dot
with a diameter of 125 pixels. Then it goes to (–150, –100) and draws a
green dot with a diameter of 140 pixels. Figure 9-5 shows the outcome.

Figure 9-5: Create dots using the turtle module.

Draw Your Own Shapes
You can also draw your own shapes using the turtle module. We’ll look at
some basic shapes here.

Triangles

The easiest way to create a triangle is by using goto(). Listing 9-6, triangle.py,
draws a triangle with the corners at (–50, –50), (50, –50), and (0, 100).

from turtle import *

Screen()
setup(600,500,100,200)
bgcolor('springgreen3')
title('Python Turtle Graphics')
hideturtle()
tracer(False)
1 pencolor('blue')
pensize(5)
up()
goto(-50,-50)
down()

Graphics and Animation with the turtle Module 179

goto(50,-50)
goto(0,100)
goto(-50,-50)
update()
done()
try:
 bye()
except Terminator:
 pass

Listing 9-6: Python code for triangle.py

The tracer() function tells the script whether to trace the movements
of the turtle. The default value is tracer(True), which means the script shows
you the movement of the turtle step-by-step. When the turtle pen draws
something, you’ll see the drawing, one stroke after another. Here, we use
tracer(False), so the final drawing is printed, but the script doesn’t show the
intermediate steps.

We change the pen’s color to blue 1 and its size to 5. We lift up the pen
and go to point (–50, –50) then put down the pen and go to point (50, –50).
This forms the first leg of the triangle. With the pen down, we ask the turtle
to go to point (0, 100), which forms the second leg. The base is drawn when
we send the pen back to point (–50, –50) to complete the triangle.

Note that since we’ve used the command tracer(False) to not display
each drawing step (thus saving time), we need to put update() at the end of
the script to show the completed picture, as shown in Figure 9-6.

Figure 9-6: Draw a triangle using the turtle module.

180 Chapter 9

T RY IT OU T

Run triangle.py and add another triangle with the following three points as cor-
ners: (–100, –100), (100, 100), and (0, 150).

Rectangles

We can draw rectangles by using goto(), as we did for triangles, but we can
also use forward() and left(). In many situations, you can achieve the same
goal by using either the goto() function or the forward() and left() func-
tions. If you know the coordinates of the destination, goto() is easier, and if
you know the distances between two points, the directional functions are
easier.

Here, we’ll use forward() and left(). You’ll achieve the same results by
using goto() in the “End-of-Chapter Exercises” on page 187.

We’ll draw a rectangle with the points (0, 0), (200, 0), (200, 100), and
(0, 100). Enter the script rectangle.py shown in Listing 9-7.

import turtle as t

Set up the screen
t.Screen()
t.setup(600,500,100,200)
t.bgcolor('green')
t.title('Python Turtle Graphics')
t.hideturtle()
t.tracer(False)
1 t.pensize(6)
Draw the first side
2 t.forward(200)
t.left(90)
Draw the second side
t.forward(100)
t.left(90)
Draw the third side
t.forward(200)
t.left(90)
Finish the rectangle
t.forward(100)
t.update()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 9-7: Python code for rectangle.py

Graphics and Animation with the turtle Module 181

We first set up the screen. At 1, we set the pen size to 6. We don’t spec-
ify the pen color, so the default color of black will be used. At 2, the turtle
moves forward 200 pixels from the initial position of (0, 0) to form the first
side of the rectangle.

Next, the turtle turns left 90 degrees so that it faces up. Then it moves
forward 100 pixels to form the second side. We then make the turtle turn
left 90 degrees so that it faces west, and move it forward 200 pixels for the
third side. The last side of the rectangle is formed similarly.

The output is shown in Figure 9-7.

Figure 9-7: Draw a rectangle using the turtle module.

We’ll use this rectangle-drawing skill to create a board for our upcom-
ing games.

Draw Grid Lines
Games such as tic-tac-toe and Connect Four use a grid. We can make a grid
simply by drawing squares. Here we’ll draw a game board with six rows and
seven columns; the horizontal lines will be thinner and lighter than the ver-
tical ones to match what we’ll do in the Connect Four game. Enter the code
from grid_lines.py in Listing 9-8.

import turtle as t

Set up the screen
t.Screen()

182 Chapter 9

t.setup(810,710, 10, 70)
t.hideturtle()
t.tracer(False)
t.bgcolor('lightgreen')
Draw the vertical lines to create 7 columns
1 t.pensize(5)
for i in range(-350,400,100):
 t.up()
 t.goto(i, -298)
 t.down()
 t.goto(i, 303)
 t.up()
Draw the horizontal lines to separate the screen in 6 rows
2 t.pensize(1)
t.color('gray')
for i in range(-300,400,101):
 t.up()
 t.goto(-350,i)
 t.down()
 t.goto(350,i)
 t.up()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 9-8: Python code for grid_lines.py

We first set up the screen. Since we plan to draw a game board with six
rows and seven columns, we set the screen size to 810 pixels wide and 710
pixels tall. This way, we can make each cell a square that’s 100 by 100 pixels,
with a 55-pixel margin around the board. It’s important to think about your
screen size so you can calculate the coordinates of various points.

We draw eight thick vertical lines with a pen size of 5 1 to divide the
screen into seven columns. The function range(-350,400,100) produces eight
values: -350, -250, ..., 350.

After that, we draw seven thin, gray, horizontal lines to form six
rows 2. If you run the script, you’ll see a screen similar to Figure 9-8.

We’ll use this board in Chapter 11 for our games.

 Animation
In this section, you’ll learn to create animation by using clear() and update()
to clear the current image and replace it with the next, producing anima-
tion frames.

Graphics and Animation with the turtle Module 183

Figure 9-8: Draw grid lines to form a six-by-seven game board

How Animation Works
The clear() function erases everything the turtle has drawn on the screen. You
can then redraw objects and use update() to put them onscreen. If you do this
repeatedly, the rapid replacement of images will create an animation effect.

We’ll explore animation by making a simple clock, shown in turtle_clock.py
in Listing 9-9.

import turtle as t
import time

import arrow

Set up the screen
t.setup(800,600, 10, 70)
t.tracer(False)
t.bgcolor('lightgreen')
t.hideturtle()
Put the script in an infinite loop
1 while True:
 # Clear the screen
 t.clear()
 # Obtain the current time
 current_time = arrow.now().format('hh:mm:ss A')

184 Chapter 9

 t.color('blue')
 t.up()
 t.goto(-300,50)
 # Write the first line of text
 2 t.write('The Current Time Is\n',font=('Arial',50,'normal'))
 t.color('red')
 t.goto(-300,-100)
 # Write what time it is
 3 t.write(current_time,font=('Arial',80,'normal'))
 time.sleep(1)
 # Put everything on screen
 t.update()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 9-9: Python code for turtle_clock.py

We import the modules and set up the screen. At 1, we start an infinite
loop. In each iteration, the script first erases everything onscreen by using
clear(). We then obtain the current time by using the arrow module and
store the value in the variable current_time.

The write() function from the turtle module writes text onscreen. It
takes the text to be displayed as the first argument and the font to use as
the second argument. At 2, we write The Current Time Is to the screen in
blue. At 3, the script writes the current time in red.

The script then pauses for one second and makes sure that all the new
drawings are updated by using update(). If you run the script, you’ll notice
that the time changes every second (Figure 9-9).

Figure 9-9: Create animation in the turtle module.

Graphics and Animation with the turtle Module 185

We’ll use this method frequently to create animations in various games.

T RY IT OU T

Run turtle_clock.py. Then modify the script to replace The Current Time Is with the
current date obtained from the arrow module in the format of January 01, 2021.

Use Multiple Turtles
Now we’ll look at using two turtles simultaneously—the equivalent of using
two pens. In Chapter 12, when we create a guess-the-word game, we’ll use
one turtle to create a gold coin on the game board and another to count
the number of chances the player has left. Whenever the player misses a let-
ter, we’ll erase the previous number and change it to the new number. If we
used only one turtle, everything, including the coin image, would be wiped.
If we use a second turtle, we can keep everything else onscreen and change
only whatever the second turtle draws.

In Listing 9-10, two_turtles.py, we’ll use one turtle to draw a square and
another to write something below it.

import turtle as t

Set up the screen
t.setup(810,710, 10, 70)
t.tracer(False)
t.hideturtle()
t.bgcolor('lightgreen')
t.color('blue')
t.pensize(5)
1 t.up()
t.goto(-200,-100)
t.down()
t.forward(400)
t.left(90)
t.forward(400)
t.left(90)
t.forward(400)
t.left(90)
t.forward(400)
Create a second turtle
2 msg = t.Turtle()
msg.hideturtle()
msg.up()
msg.color('red')
msg.goto(-300,-200)
msg.write('this is written by the second turtle',font=('Arial',30,'normal'))
t.update()
t.done()

186 Chapter 9

try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 9-10: Python code for two_turtles.py

We import the turtle module and set up a screen with a size of 810 by
710 pixels. Starting at 1, we draw a blue square in the middle of the screen,
similar to the way we drew a rectangle but with all sides the same length.

At 2, we create a second turtle with Turtle() and name it msg. We tell
the script to hide the second turtle

The second turtle msg lifts up the pen, changes the color to red, goes
to (–300, –200), and writes the message this is written by the second turtle.
The update() function refreshes the screen to draw everything created by
the two turtles, shown in Figure 9-10.

Figure 9-10: A screen created with two turtles

T RY IT OU T

Run two_turtles.py and then modify it to add a third turtle. Use the new turtle to
write a message at the bottom of the screen.

Graphics and Animation with the turtle Module 187

 Summary
In this chapter, you learned the basics of the turtle module. You first learned
how to set up a turtle screen and then learned basic movements like going
forward or backward and turning left or right. You created various shapes
by using both the built-in function and basic movement commands.

Finally, you learned to create animation effects in the turtle module by
using the clear() and update() functions. In the next few chapters, you’ll
learn how to use these skills to create voice-controlled graphical games.

 End-of-Chapter Exercises

1. Modify set_up_screen.py so that the screen size is 500 pixels wide and 400
pixels tall, the background color is blue, and the title is Modified Screen.

2. Modify forward_backward.py so that the turtle first moves backward 100
pixels and then moves forward 250 pixels.

3. Modify dots.py to have only two light green dots with diameters of 60 at
points (–100, –100) and (100, 100).

4. Modify triangle.py so that the three sides of the triangle are red with a
thickness of 3.

5. Replicate the result in rectangle.py by using goto(). You aren’t allowed to
use the functions forward(), backward(), left(), or right().

10
T I C - T A C - T O E

In this chapter, you’ll build a voice-controlled
tic-tac-toe game to put all your new skills into

practice. You’ll draw a game board with blue
and white game pieces, disallow invalid moves,

and detect if a player has won. You’ll then add the
speech recognition and text-to-speech functionality
and set the game so you play with your own computer.

As usual, all scripts in this chapter are available at the book’s resources
page at https://www.nostarch.com/make-python-talk/. Before you begin, set up
the folder /mpt/ch10/ for this chapter.

https://www.nostarch.com/make-python-talk/

190 Chapter 10

NE W SKIL L S

• Using mouse clicks in the turtle module

• Converting coordinates to cell numbers on game boards

• Coding game rules

• Using tkinter to display pop-up message boxes

• Voice-controlling games

 Game Rules
Tic-tac-toe is probably one of the most well-known games in the world, but
just to be sure, I’ll go over the rules before we create our game board. In
tic-tac-toe, two players take turns marking a cell with an X or O in a three-by-
three grid. The first player to connect three Xs or Os in a row horizontally,
vertically, or diagonally wins. If no one connects three before all the cells are
full, the game is tied. Instead of X and O, we’ll use blue and white dots as
game pieces.

 Draw the Game Board
We’ll draw a three-by-three grid on the screen and assign a number to each
cell so we can tell the script where to place each game piece. Open your
Spyder editor, copy the code in Listing 10-1, and save the script as ttt_board.py
in your chapter folder.

import turtle as t

Set up the screen
t.setup(600,600,10,70)
t.tracer(False)
t.bgcolor("red")
t.hideturtle()
t.title("Tic-Tac-Toe in Turtle Graphics")
Draw horizontal lines and vertical lines to form grid
t.pensize(5)
1 for i in (-100,100):
 t.up()
 t.goto(i,-300)
 t.down()
 t.goto(i,300)
 t.up()
 t.goto(-300,i)
 t.down()

Tic-Tac-Toe 191

 t.goto(300,i)
 t.up()
Create a dictionary to map cell numbers to cell center coordinates
2 cellcenter = {'1':(-200,-200), '2':(0,-200), '3':(200,-200),
 '4':(-200,0), '5':(0,0), '6':(200,0),
 '7':(-200,200), '8':(0,200), '9':(200,200)}
Go to the center of each cell, write down the cell number
3 for cell, center in list(cellcenter.items()):
 t.goto(center)
 t.write(cell,font = ('Arial',20,'normal'))
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 10-1: Drawing the tic-tac-toe game board

We import all functions in the turtle module and set the screen to 600
by 600 pixels. Because we have a three-by-three grid, each cell is 200 by 200
pixels. We set the background color to red and set the title as Tic-Tac-Toe in
Turtle Graphics.

With the command for i in (-100, 100), we iterate the variable i through
the range –100 to 100 1. As a result, the for loop produces two horizontal
lines and two vertical lines. The two horizontal lines are between points
(–300, –100) and (300, –100) and points (–300, 100) and (300, 100). The
two vertical lines are between points (–100, –300) and (–100, 300) and
points (100, –300) and (100, 300). These lines evenly divide the screen into
nine cells.

We then create a dictionary cellcenter to map each cell number to the
x- and y-coordinates of the center of the corresponding cell 2. For example,
the lower-left cell is cell number 1, and the coordinates of its center are (x =
–200, y = –200). We do this for all nine cells in the dictionary, using the cell
number as the key and the coordinates as the value.

At 3, we use the for loop to iterate through nine pairs of values to write
the cell number at the cell’s center. The command list(cellcenter.items())
produces a list of the nine key-and-value pairs from cellcenter, which should
look like this:

[('1', (-200, -200)), ('2', (0, -200)), ('3', (200, -200)), ('4', (-200, 0)),
('5', (0, 0)), ('6', (200, 0)), ('7', (-200, 200)), ('8', (0, 200)), ('9',
(200, 200))]

At each iteration of the for loop, the turtle goes to the center of the
cell and writes the cell number there. Run the script and you should see a
screen similar to Figure 10-1.

192 Chapter 10

Figure 10-1: The board for tic-tac-toe

 Create the Game Pieces
Now we’ll add code to place game pieces in the cells. You’ll first learn how
mouse clicks work in the turtle module and then use them to place the pieces.

How Mouse Clicks Work in turtle
When you left-click on the turtle screen, the x- and y-coordinates of the
point you clicked are displayed onscreen. Listing 10-2, mouse_click.py, han-
dles a simple mouse click. This is just for example purposes; we won’t use
this code in the final script but will use the same principles.

import turtle as t

Set up the screen
t.setup(620,620,360,100)
t.title("How Mouse-Clicks Work in Turtle Graphics")
Define get_xy() to print the coordinates of the point you click
1 def get_xy(x,y):
 print(f'(x, y) is ({x}, {y})')
Hide the turtle so that you don't see the arrowhead
t.hideturtle()
Bind the mouse click to the get_xy() function
2 t.onscreenclick(get_xy)

Tic-Tac-Toe 193

3 t.listen()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 10-2: How mouse clicks work in the turtle module

As usual, we import the turtle module and set up the screen. At 1, we
define the function get_xy(), which prints out the x- and y-coordinates
of your click. We also hide the turtle so you don’t see the cursor moving
around the screen. At 2, we bind the onscreen mouse click to the get_xy()
function by using the turtle function onscreenclick(), which returns the x-
and y-coordinates of the click. As a result, onscreenclick(get_xy) supplies the
x- and y-coordinates of your mouse click to get_xy() as its two inputs. At 3,
we use listen() to detect events like mouse clicks and keyboard presses.

Run mouse_click.py, randomly click the screen several times, and you
should see something like this:

(x, y) is (-46.0, 109.0)
(x, y) is (14.0, -9.0)
(x, y) is (-185.0, -19.0)
(x, y) is (-95.0, 109.0)
(x, y) is (13.0, -81.0)

For each of my five clicks, onscreenclick() captured the x- and y-coordinates
of the point and provided the two values to get_xy(), which printed out the cor-
responding x- and y-values.

Convert Mouse Clicks to Cell Numbers
Next, we’ll combine the board creation and click detection scripts so that
when you click a cell, the script prints out the cell number. In Figure 10-2,
I’ve marked the row and column numbers on the game board along with
the x- and y-coordinates of the gridlines.

Open ttt_board.py, add the code in Listing 10-3 at the bottom (above
t.done()) and save the new script as cell_number.py in your chapter folder.
This script is just an example; we won’t use it in the final code but will use
something similar.

--snip--
for cell, center in list(cellcenter.items()):
 t.goto(center)
 t.write(cell,font = ('Arial',20,'normal'))
Define a function cell_number() to print out the cell number
1 def cell_number(x,y):
 if -300<x<300 and -300<y<300:
 # Calculate the column number based on x value
 2 col = int((x+500)//200)
 print('column number is ', col)
 # Calculate the row number based on y value

194 Chapter 10

 row = int((y+500)//200)
 print('row number is ', row)
 # Calculate the cell number based on col and row
 3 cellnumber = col+(row-1)*3
 print('cell number is ', cellnumber)
 else:
 print('you have clicked outside the game board')
Hide turtle so that you don't see the arrowhead
t.hideturtle()
bind the mouse click to the cell_number() function

 onscreenclick(cell_number)
t.listen()
--snip--

Listing 10-3: Converting mouse clicks to cell numbers

Figure 10-2: Mark the row and column numbers on the game board.

At 1, we define cell_number(), which will convert the x- and y-coordinates
of the mouse click to the cell number. Inside the function, we restrict the
x- and y-coordinates of the point you click to the range of the board. If
you click outside the range, the script will print you have clicked outside
the game board.

At 2, we convert the x-coordinate of the click to the column number.
Points in column 1 have x-coordinates between –300 and –100, and points in
column 2 have x-coordinates between –100 and 100, so we use the formula

Tic-Tac-Toe 195

col = int((x+500)//200) to get the full range of pixel coordinates in the col-
umn so we can convert the x-coordinate to the column number. We use the
same method to convert the y-coordinate to the row number.

We then calculate the cell number by using the formula cellnumber =
col+(row-1)*3 because the cell numbers increase from left to right and then
from bottom to top 3. Finally, we bind the onscreen click to cell_number().

Run cell_number.py. Here’s the output from one exchange with the
script:

column number is 3
row number is 2
cell number is 6
column number is 1
row number is 3
cell number is 7
column number is 2
row number is 1
cell number is 2

Each time you click a cell, the script prints out the column number, row
number, and cell number.

T RY IT OU T

Run cell_number.py and click each cell to make sure the numbers match those
in Figure 10-2.

Place Game Pieces
Next, we’ll place the game pieces on the board. When you first click any of
the nine cells, a blue piece will appear at the center of the cell. When you
click again, the piece will be white, then blue, and so on.

Open ttt_board.py, add the code in Listing 10-4, and save the new script
as mark_cell.py in your chapter folder. Make sure you don’t add this code
snippet to cell_number.py!

--snip--
for cell, center in list(cellcenter.items()):
 t.goto(center)
 t.write(cell,font = ('Arial',20,'normal'))
The blue player moves first
turn = "blue"
Define a function mark_cell() to place a dot in the cell
1 def mark_cell(x,y):
 # Make the variable turn a global variable

196 Chapter 10

 2 global turn
 # Calculate the cell number based on x and y values
 if -300<x<300 and -300<y<300:
 col = int((x+500)//200)
 row = int((y+500)//200)
 # The cell number is a string variable
 3 cellnumber = str(col + (row - 1)*3)
 else:
 print('you have clicked outside the game board')

 # Go to the corresponding cell and place a dot of the player's color
 t.up()
 4 t.goto(cellcenter[cellnumber])
 t.dot(180,turn)
 t.update()
 # give the turn to the other player
 if turn == "blue":
 turn = "white"
 else:
 turn = "blue"

Hide the turtle so that you don't see the arrowhead
t.hideturtle()
Bind the mouse click to the mark_cell() function
t.onscreenclick(Mark_cell)
t.listen()
--snip--

Listing 10-4: Placing game pieces on the board

We draw the board and then define the variable turn that will keep
track of whose turn it is. We first assign the value blue to the variable so that
the blue player moves first.

At 1, we define mark_cell(), which places a piece in the cell you click.
At 2, we declare the global variable turn. Python provides the global keyword,
which allows turn to be used both inside and outside mark_cell(). Without
making the variable global, you’d get the error message UnboundLocalError:
local variable 'turn' referenced before assignment each time you clicked the
board.

N O T E Python has two types of variables: global variables, which can be reached anywhere
in the script, and local variables, which live only inside a function and can’t be
reached outside the function. By declaring a global variable, you make it reachable
everywhere in the script. In mark_cell.py, the variable turn is created outside the
function mark_cell(), but because turn will be modified in mark_cell(), we need to
make it accessible in the global namespace as well. Otherwise, the change in the value
of turn will not be carried outside the function.

Tic-Tac-Toe 197

We then convert the x- and y-coordinates of the click to the cell num-
ber on the game board 3. Within the same line, we also convert the cell
number from an integer to a string to match the variable type used in the
dictionary cellcenter.

At 4, we get the coordinates for the center of the clicked cell from
cellcenter and tell the turtle to go there. The turtle places a dot 180 pixels
wide and the color of the value stored in turn. After that, the turn is over,
and we assign the turn to the other player. Finally, we bind mark_cell() to
the mouse-click event.

Run the script and you’ll be able to click the board and mark the
cell. The color of the dot will alternate between blue and white, as in
Figure 10-3.

Figure 10-3: Mark cells on the tic-tac-toe board.

The script is now a playable game! However, we need to implement
three new rules to make it follow the rules of tic-tac-toe:

•	 If a cell is already occupied, you cannot mark it again.

•	 If a player marks three cells in a straight line—either horizontally, verti-
cally, or diagonally—the player wins, and the game should stop.

•	 If all nine cells are occupied, the game should stop, and a tie should be
called if no player wins.

198 Chapter 10

T RY IT OU T

Run mark_cell.py and find someone to play the game with you. You’ll need to
adjust your game play to make allowances for the unimplemented rules. Be sure
to use your own judgment for the preceding three rules.

 Determine Valid Moves, Wins, and Ties
Next, we’ll implement those rules, allowing only valid moves and declaring
wins (or ties). Download ttt_click.py from the book’s resources and save it in
your chapter folder or alter mark_cell.py with the differences highlighted in
Listing 10-5.

from tkinter import messagebox
--snip--
The blue player moves first
turn = "blue"
Count how many rounds played
rounds = 1 1
Create a list of valid moves
validinputs = list(cellcenter.keys())
Create a dictionary of moves made by each player
occupied = {"blue":[],"white":[]}
Determine if a player has won the game
def win_game(): 2
 win = False
 if '1' in occupied[turn] and '2' in occupied[turn] and '3' in occupied[turn]:
 win = True
 if '4' in occupied[turn] and '5' in occupied[turn] and '6' in occupied[turn]:
 win = True
 if '7' in occupied[turn] and '8' in occupied[turn] and '9' in occupied[turn]:
 win = True
 if '1' in occupied[turn] and '4' in occupied[turn] and '7' in occupied[turn]:
 win = True
 if '2' in occupied[turn] and '5' in occupied[turn] and '8' in occupied[turn]:
 win = True
 if '3' in occupied[turn] and '6' in occupied[turn] and '9' in occupied[turn]:
 win = True
 if '1' in occupied[turn] and '5' in occupied[turn] and '9' in occupied[turn]:
 win = True
 if '3' in occupied[turn] and '5' in occupied[turn] and '7' in occupied[turn]:
 win = True
 return win
Define a function mark_cell() to place a dot in the cell
def mark_cell(x,y):
 # Declare global variables
 global turn, rounds, validinputs 3

Tic-Tac-Toe 199

 # Calculate the cell number based on x and y values
 if -300<x<300 and -300<y<300:
 col = int((x+500)//200)
 row = int((y+500)//200)
 # The cell number is a string variable
 cellnumber = str(col + (row - 1)*3)
 else:
 print('you have clicked outside the game board')
 # Check if the move is a valid one
 if cellnumber in validinputs: 4
 # Go to the corresponding cell and place a dot of the player's color
 t.up()
 t.goto(cellcenter[cellnumber])
 t.dot(180,turn)
 t.update()
 # Add the move to the occupied list for the player
 occupied[turn].append(cellnumber) 5
 # Disallow the move in future rounds
 validinputs.remove(cellnumber)
 # Check if the player has won the game
 if win_game() == True: 6
 # If a player wins, invalid all moves, end the game
 validinputs = []
 messagebox.showinfo("End Game",f"Congrats player {turn}, you won!")
 # If all cells are occupied and no winner, it's a tie
 elif rounds == 9: 7
 messagebox.showinfo("Tie Game","Game over, it's a tie!")
 # Counting rounds
 rounds += 1
 # Give the turn to the other player
 if turn == "blue":
 turn = "white"
 else:
 turn = "blue"
 # If the move is not a valid move, remind the player
 else:
 messagebox.showerror("Error","Sorry, that's an invalid move!")
Bind the mouse click to the mark_cell() function
t.onscreenclick(mark_cell)
--snip--

Listing 10-5: Allow only valid moves and declare wins and ties.

Our first change is to import the messagebox module from the tkinter
package; this module displays a message box for a win, tie, or invalid move.

Starting at 1, we create a variable rounds, a list validinputs, and a dic-
tionary occupied. The variable rounds keeps track of the number of turns
taken, which is the number of cells that have been marked. When the
number of rounds reaches nine and no player wins (which is often the
case in tic-tac-toe), we’ll declare a tie game.

200 Chapter 10

We use validinputs to determine whether a move is valid. If a cell is
marked by a player, we’ll remove it from the list of valid moves.

The dictionary occupied keeps track of each player’s moves. At the
beginning of the game, the keys blue and white both have an empty list as
their value. When a player occupies a cell, the cell number will be added to
that player’s list. For example, if the blue player has occupied cells 1, 5, and 9
and the white player has occupied cells 3 and 7, occupied will become {"blue"
:["1","5","9"],"white":["3","7"]}. We’ll use this later to determine whether a
player has won the game.

At 2, we define win_game(), which checks whether a player has won the
game. There are eight ways a player can win, which we explicitly check for:

•	 Cells 1, 2, and 3 have been occupied by the same player.

•	 Cells 4, 5, and 6 have been occupied by the same player.

•	 Cells 7, 8, and 9 have been occupied by the same player.

•	 Cells 1, 4, and 7 have been occupied by the same player.

•	 Cells 2, 5, and 8 have been occupied by the same player.

•	 Cells 3, 6, and 9 have been occupied by the same player.

•	 Cells 1, 5, and 9 have been occupied by the same player.

•	 Cells 3, 5, and 7 have been occupied by the same player.

The function win_game() creates the variable win and assigns False as a
default value. The function checks the dictionary occupied for the list of
cells occupied by the player who currently has the turn, checking all eight
win cases listed earlier. If one of the cases matches, the value win changes
to True. When win_game() is called, it returns the value stored in the vari-
able win.

We’ve made significant changes to mark_cell(). At 3, we declare three
global variables; all must be declared global because they will be modified
inside the function. At 4, we check whether the cell number most recently
clicked is in the list validinputs; if it is, a dot is placed in the cell, and the
cell number is added to the player’s list of occupied cells 5. The cell is then
removed from validinputs so that players can’t mark the same cell in future
rounds.

At 6, we call win_game() and see whether the current player has won the
game. If yes, we change validinputs to an empty list so no further moves can
be made. A message box will pop up to say, Congrats player blue, you won! or
Congrats player white, you won!, using showinfo() from the messagebox module
(Figure 10-4).

Tic-Tac-Toe 201

Figure 10-4: A win for blue!

If the player hasn’t won, the script checks whether the number of rounds
has reached nine 7. If yes, the script declares a tie game, displaying Game
over, it's a tie! (Figure 10-5).

Figure 10-5: A tied game

202 Chapter 10

If the game doesn’t end, we increase the number of rounds by one and
assign the turn to the other player. During the game, if a player clicks an
invalid cell, we’ll display Sorry, that's an invalid move! (Figure 10-6).

Figure 10-6: An invalid move

T RY IT OU T

Run ttt_click.py and play a few games, generating the following three instances:
you make an invalid move, a player wins the game, and the game is tied.

 Voice-Controlled Version
Now we’re ready to add the voice control and speech functionality. One signifi-
cant change is that we’ll now make your opponent your computer. We’ll build
on the latest ttt_click.py file. After you make a move as the blue player, the com-
puter will randomly select a move as the white player until the game ends.

N O T E If you want to play a voice-controlled game with two players, go to the book’s resources
page and download ttt_hs_2players.py. We discuss only the one-player version here
to save space. In our ultimate VPA in Chapter 17, you’ll see a generalized version
of the game in which you can choose to play against a computer or a human and
whether you want to play first or second.

Tic-Tac-Toe 203

Download ttt_hs.py from the book’s resources or make the changes
shown in Listing 10-6.

import turtle as t
from random import choice
from tkinter import messagebox

Import functions from the local package
from mptpkg import voice_to_text, print_say
--snip--
 if '3' in occupied[turn] and '5' in occupied[turn] and '7' in
occupied[turn]:
 win = True
 return win
Start an infinite loop to take voice inputs
1 while True:
 # Ask for your move
 print_say(f"Player {turn}, what's your move?")
 # Capture your voice input
 inp = voice_to_text()
 print(f"You said {inp}.")
 inp = inp.replace('number ','')
 inp = inp.replace('one','1')
 inp = inp.replace('two','2')
 inp = inp.replace('three','3')
 inp = inp.replace('four','4')
 inp = inp.replace('five','5')
 inp = inp.replace('six','6')
 inp = inp.replace('seven','7')
 inp = inp.replace('eight','8')
 inp = inp.replace('nine','9')
 if inp in validinputs:
 # Go to the corresponding cell and place a dot of the player's color
 t.up()
 t.goto(cellcenter[inp])
 t.dot(180,turn)
 t.update()
 # Add the move to the occupied list for the player
 occupied[turn].append(inp)
 # Disallow the move in future rounds
 validinputs.remove(inp)
 # Check if the player has won the game
 2 if win_game() == True:
 # If a player wins, invalid all moves, end the game
 validinputs = []
 print_say(f"Congrats player {turn}, you won!")
 messagebox.showinfo\
 ("End Game",f"Congrats player {turn}, you won!")
 break

 # If all cells are occupied and no winner, game is a tie
 elif rounds == 9:
 print_say("Game over, it's a tie!")
 messagebox.showinfo("Tie Game","Game over, it's a tie!")
 break

204 Chapter 10

 # Counting rounds
 rounds += 1
 # Give the turn to the other player
 if turn == "blue":
 turn = "white"
 else:
 turn = "blue"

 # The computer makes a random move
 3 inp = choice(validinputs)
 print_say(f'The computer occupies cell {inp}.')
 t.up()
 t.goto(cellcenter[inp])
 t.dot(180,turn)
 t.update()
 occupied[turn].append(inp)
 validinputs.remove(inp)
 if win_game() == True:
 validinputs = []
 print_say(f"Congrats player {turn}, you won!")
 messagebox.showinfo\
 ("End Game",f"Congrats player {turn}, you won!")
 break
 elif rounds == 9:
 print_say("Game over, it's a tie!")
 messagebox.showinfo("Tie Game","Game over, it's a tie!")

 break
 rounds += 1
 if turn == "blue":
 turn = "white"
 else:
 turn = "blue"

 # If the move is not a valid move, remind the player
 else:
 print_say("Sorry, that's an invalid move!")
t.done()
--snip--

Listing 10-6: Adding speech and voice-control functionality

We import the functions we’ll need: the choice() function from the ran-
dom module to let the computer randomly select a move and our print_say()
and voice_to_text() functions from the custom package mptpkg.

At 1, we start an infinite while loop. At each iteration, the script asks
for your move out loud. You speak into the microphone to make your move,
and the script captures your voice command, storing the response in the
variable inp.

Here we did a little tweaking to make voice_to_text() more responsive to
your voice commands. When your voice input is just one word, such as “One”
or “Two,” it’s hard for the software to put the word in context and respond.
On the other hand, if you say “Number one” or “Number two,” the software

Tic-Tac-Toe 205

can easily pick up your meaning. The script simply replaces the “number”
part of the voice command with an empty string so that only the number is
left in inp. Sometimes voice_to_text() returns the number in word form such
as one or two, instead of in numeric form, such as 1 or 2. We therefore also
change all the word forms to numerical forms. This way, you can say “num-
ber one” or “one” to the microphone, and inp will always be in the form you
want: 1.

If your choice is in validinputs, the script performs the sequence of
actions to make the move: place a dot in the corresponding cell, add the
cell number to your list of occupied cells, and remove the occupied cell
number from the list of valid inputs.

The script then checks if you’ve won or tied the game 2 and responds
out loud appropriately.

Once your turn is over, the computer randomly selects a move from
validinputs to play against you 3. The script checks whether the computer
has won or tied the game. If your voice command is not a valid move, the
script speaks an alert.

Here’s one interaction with the game:

Player blue, what's your move?
You said 7.
The computer occupies cell 3.
Player blue, what's your move?
You said 8.
The computer occupies cell 1.
Player blue, what's your move?
You said 9.
Congrats player blue, you won!

I’ve managed to win in just three moves!

T RY IT OU T

Run ttt_hs.py and try to beat the computer.

 Summary
In this chapter, you learned to build a voice-controlled graphical tic-tac-toe
game that talks in a human voice. Along the way, you learned a few new skills.

You learned how mouse clicks work in the turtle module. With that
knowledge, we marked cells on the game board with mouse clicks.

You learned how to determine whether a player has won tic-tac-toe
based on the explicit game rules. This is at the heart of game creation. You
listed all cases when a player can win the game, then added code to check
all cases and see whether there is a winner.

206 Chapter 10

You also added the speech recognition and text-to-speech features to
a game, making a few tweaks to make sure the script can understand your
input. By combining these skills, you’ll be able to create your own voice-
controlled games.

 End-of-Chapter Exercises

1. Modify ttt_board.py so that the cell number appears in 15-point font at
the lower-left corner of each cell (80 pixels from the center of the cell,
both horizontally and vertically).

2. Modify mouse_click.py so that each time you click the screen, the script
prints out the additional message x + y is, followed by the actual value
of the x- and y-coordinates of the clicked point.

3. Modify cell_number.py so that each time you click the screen, the script
prints you clicked the point (x, y) before printing the column, row, and
cell numbers, where x and y are the actual coordinates. For example, if
you click the point (x = –100, y = 50), the message should say you clicked
the point (-100, 50).

4. Modify mark_cell.py so that the white player moves first.

5. Modify ttt_click.py so that a player wins only by marking three cells in a
row horizontally or vertically, but not diagonally.

11
C O N N E C T F O U R

In this chapter, you’ll build a voice-controlled
Connect Four game. As with tic-tac-toe in

Chapter 10, you’ll first draw the board and
set the yellow and red game pieces to alter-

nate turns. You’ll animate the effect of a disc falling
from the top of a column to the lowest available row to
make the game more visually engaging. You’ll disallow
invalid moves, detect if a player has won, and detect if
all 42 cells have been occupied with no winner, mean-
ing the game is tied.

In Chapter 10, you learned how to check whether a player has won the
game by laying out all winning scenarios and checking whether the current
game board matches one of the scenarios. We’ll apply that same strategy
here. You’ll also learn how to use exception handling to prevent crashing
during the process of checking and how to prevent negative indexing errors.

208 Chapter 11

Once the game is set up, we’ll add the speech recognition and text-to-
speech features so you can play the game with your voice alone.

To start, set up the folder /mpt/ch11/ for this chapter. All scripts in this
chapter are available through the book’s resources page at https://www.nostarch
.com/make-python-talk/.

NE W SKIL L S

• Creating animations using turtle

• Using exception handling to check for winning cases

• Handling negative indexing in Python

• Mapping a list of lists to coordinates in a two-dimensional space

 Game Rules
Connect Four is a well-known board game, but I’ll go over the rules to clar-
ify the logic in the upcoming code. In Connect Four, two players take turns
dropping discs into one of seven columns, from the top. One player has red
discs and the other yellow. The seven columns are on a six-row, vertically
suspended grid. When a disc is dropped into a column, it will fall to the
lowest available space in that column. Discs cannot move from one column
to another.

The first player who forms a direct line—either horizontally, vertically,
or diagonally—with four of their game pieces wins. If all 42 slots have been
filled and nobody has won, the game is tied. We’ll use a red dot and a yellow
dot to represent the discs.

 Draw the Game Board
We first draw a grid with six rows and seven columns. We’ll number the col-
umns at the top of the screen to make it easier to play.

Open your Spyder editor and enter the code from Listing 11-1. Save the
script as conn_board.py in your chapter folder.

import turtle as t

Set up the screen
1 t.setup(700,600,10,70)
t.hideturtle()
t.tracer(False)
t.bgcolor("lightgreen")
t.title("Connect Four in Turtle Graphics")
Draw six thick vertical lines

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

Connect Four 209

2 t.pensize(5)
for i in range(-250,350,100):
 t.up()
 t.goto(i,-350)
 t.down()
 t.goto(i,350)
 t.up()
Draw five thin gray horizontal lines to form grid
3 t.pensize(1)
t.pencolor("grey")
for i in range(-200,300,100):
 t.up()
 t.goto(-350,i)
 t.down()
 t.goto(350,i)
 t.up()
Write column numbers on the board
4 colnum = 1
for x in range(-300,350,100):
 t.goto(x,270)
 t.write(colnum,font = ('Arial',20,'normal'))
 colnum += 1
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 11-1: Drawing the Connect Four game board

We first import all functions in the turtle module, and then we set up
the screen as 700 by 600 pixels 1. That lets us make each cell 100 by 100
pixels to keep things simple. We set the background color to light green
and the title to Connect Four in Turtle Graphics.

We then draw six thick vertical lines to divide the screen into seven
columns. At 2, we set the pen width to 5 pixels. The command line for i
in range(-250,350,100) tells the variable i to iterate through the following six
values: –250, –150, –50, 50, 150, and 250. These are the x-coordinates of the
six vertical lines. The y-coordinates of the two endpoints of the six vertical
lines are all –350 and 350. Similarly, we draw five thin, gray horizontal lines
to divide the screen into six rows, starting at 3, with a pen size of 1 pixel
and color of gray so that the lines appear thin and light. This all gives us
an even grid with seven columns and six rows.

Next, we number the columns to let players know where to place the
discs. We first create a variable colnum and assign a value 1 to it 4. We then
iterate through the x-coordinates of the center of the seven columns and
write the corresponding column number by adding one to the value of
colnum.

Run the script and you should see a screen like Figure 11-1.

210 Chapter 11

Figure 11-1: The board for the Connect Four game

 The Mouse-Click Version
Now you have a game board. Let’s drop some discs into the columns. In this
section, you’ll learn how to use mouse clicks to place a disc in a column and
let it fall to the lowest available cell. After that, you’ll detect invalid moves,
wins, and ties.

Drop a Disc
Here, you’ll use mouse clicks to place a disc in a column of your choice. The
column number in which the disc will appear is determined by where you click.
The row number depends on the number of discs already in that column.

When you first click a column, a red dot will be placed in the lowest
available cell. The colors will alternate with each click.

Open conn_board.py and add the code in Listing 11-2. Then save the
new script as show_disc.py in your chapter folder.

--snip--
Write column numbers on the board
colnum = 1
for x in range(-300, 350, 100):
 t.goto(x,270)
 t.write(colnum,font = ('Arial',20,'normal'))
 colnum += 1
The red player moves first
1 turn = "red"
The x-coordinates of the center of the 7 columns

Connect Four 211

2 xs = [-300,-200,-100,0,100,200,300]
The y-coordinates of the center of the 6 rows
ys = [-250,-150,-50,50,150,250]
Keep track of the occupied cells
occupied = [list(),list(),list(),list(),list(),list(),list()]
Define a function conn() to place a disc in a cell
3 def conn(x,y):
 # Make the variable turn a global variable
 global turn
 # Calculate the column number based on x- and y-values
 if -350<x<350 and -300<y<300:
 col = int((x+450)//100)
 else:
 print('You have clicked outside the game board!')
 # Calculate the lowest available row number in that column
 row = len(occupied[col-1])+1
 # Go to the cell and place a dot of the player's color
 t.up()
 t.goto(xs[col-1],ys[row-1])
 t.dot(80,turn)
 # Add the move to the occupied list to keep track
 occupied[col-1].append(turn)
 # Give the turn to the other player
 if turn == "red":
 turn = "yellow"
 else:
 turn = "red"
Bind the mouse click to the conn() function
t.onscreenclick(conn)
t.listen()
t.done()
--snip--

Listing 11-2: Dropping discs on the game board

The red player goes first, so after the game board is drawn, we define the
variable turn and assign the value red to it 1. Starting at 2, we define three
lists. The list xs contains values corresponding to the x-coordinates of the
middle points of the seven columns. The list ys has six values corresponding
to the y-coordinates of the middle points of the six rows. Later, we’ll use these
lists to determine the x- and y-coordinates of the center of all 42 cells.

The list occupied is a list of lists. It starts as a list of seven empty lists, each
representing a column. When you place a disc in a column, the disc will be
added to the corresponding list. This way, occupied will keep track of all discs
placed and their positions.

At 3, we define conn(), which places the disc on the column you click.
We declare turn as a global variable, so that its value can be recognized both
inside and outside conn(). Then, we convert the x-coordinate of the user’s
click to the column number on the game board. We then determine the
lowest row available in that column, which tells us which row to place the
disc in. Note that occupied[col-1] is the list of all discs currently in the col-
umn, and we use col-1 instead of col because Python uses zero indexing but
our columns are numbered starting at 1.

212 Chapter 11

We then obtain the x- and y-coordinates of the center of the cell in which
to place the new disc. The turtle module places a dot with a diameter of 80 pix-
els and the color value stored in turn. We add the disc to the corresponding list
within occupied so that next time a disc is placed in the same column, the appro-
priate cell is marked as invalid. With this, the player’s turn is over, and we hand
the turn to the other player. Finally, we bind conn() to the mouse-click event.

Run the script, and you should be able to click on the game board and
mark the cell with a red or yellow dot. Keep clicking, and the color of the
dot will alternate between red and yellow (Figure 11-2).

Figure 11-2: Place discs on the Connect Four game board.

Animate the Falling Discs
When you play Connect Four in the real world, you drop the disc at the top,
and it falls into the proper position. Next, you’ll create the animation effect
of the disc falling. This is a good opportunity to learn how to create anima-
tion effects using the turtle module.

Open show_disc.py and add the code in Listing 11-3. Save this as disc_fall.py
in your chapter folder.

import turtle as t
1 from time import sleep
--snip--
Keep track of the occupied cells
occupied = [list(),list(),list(),list(),list(),list(),list()]
Create a second turtle to show disc falling
2 fall = t.Turtle()
fall.up()

Connect Four 213

3 fall.hideturtle()
Define a function conn() to place a disc in a cell
def conn(x,y):
 # Make the variable turn a global variable
 global turn
 # Calculate the column number based on x and y values
 if -350<x<350 and -300<y<300:
 col = int((x+450)//100)
 else:
 print('You have clicked outside the game board!')
 # Calculate the lowest available row number in that column
 row = len(occupied[col-1])+1
 # Show the disc fall from the top
 4 if row<6:
 for i in range(6,row,-1):
 fall.goto(xs[col-1],ys[i-1])
 fall.dot(80,turn)
 update()
 sleep(0.05)
 fall.clear()
 # Go to the cell and place a dot of the player's color
 up()
--snip--

Listing 11-3: Script to show the animation effect of discs falling

We import sleep() so we can pause the script to let the falling disc stay
in a cell for a short while, allowing the user to see its movement 1. Starting
at 2, we create a second turtle named fall. We lift the drawing pen of the
new turtle so that it won’t leave a line as it moves. We also use hideturtle() to
hide the cursor 3.

Starting at 4, we animate the falling disc. We first see if the column is
full by checking whether the row number is less than 6. If yes, we’ll show the
animation effect. If the lower rows in the column are full, the disc can be
left in place (there’s no need to show the disc falling).

We iterate i through all the empty cells above the lowest available cell. If
the lowest available position is row = 2, for example, the command for i in
range(6,row,-1) iterates i through values 6, 5, 4, and 3. The -1 tells the range
function to count backward. At each iteration, the fall turtle places a dot in
the center of the empty cell. The script draws a dot to the screen, pauses for
0.05 seconds, and then erases the dot before going to the next iteration.

The script is now a complete game! However, at the moment, players
must use their own judgment to enforce the following rules:

•	 If a column is already full, you cannot drop a disc in it.

•	 If a player connects four cells in a straight line, that player wins, and the
game should stop.

•	 If all 42 cells are occupied and nobody has won, the game should stop
and a tie be declared.

Let’s code that into the game.

214 Chapter 11

T RY IT OU T

Run disc_fall.py, click a few times, and then start it again. Find someone to play
with you, being mindful of the three rules just mentioned.

 Determine Valid Moves, Wins, and Ties
Next, we’ll improve the game by blocking invalid moves and declaring wins
or ties. Open disc_fall.py and add the code in Listing 11-4. Save the new
script as conn_click.py. The code changes are shown in two sections, so it’s
easier to refer back to the code when reading the explanations.

import turtle as t
from time import sleep
from tkinter import messagebox

Set up the screen
--snip--
Create a second turtle to show disc falling
fall = t.Turtle()
fall.up()
fall.hideturtle()
Create a list of valid moves
1 validinputs = [1,2,3,4,5,6,7]
Define a horizontal4() function to check connecting 4 horizontally
2 def horizontal4(x, y, turn):
 win = False
 for dif in (-3, -2, -1, 0):
 try:
 if occupied[x+dif][y] == turn\
 and occupied[x+dif+1][y] == turn\
 and occupied[x+dif+2][y] == turn\
 and occupied[x+dif+3][y] == turn\
 and x+dif >= 0:
 win = True
 except IndexError:
 pass
 return win
Define a vertical4() function to check connecting 4 vertically
3 def vertical4(x, y, turn):
 win = False
 try:
 if occupied[x][y] == turn\
 and occupied[x][y-1] == turn\
 and occupied[x][y-2] == turn\
 and occupied[x][y-3] == turn\
 and y-3 >= 0:
 win = True
 except IndexError:
 pass
 return win

Connect Four 215

Define a forward4() function to check connecting 4 diagonally in / shape
def forward4(x, y, turn):
 win = False
 for dif in (-3, -2, -1, 0):
 try:
 if occupied[x+dif][y+dif] == turn\
 and occupied[x+dif+1][y+dif+1] == turn\
 and occupied[x+dif+2][y+dif+2] == turn\
 and occupied[x+dif+3][y+dif+3] == turn\
 and x+dif >= 0 and y+dif >= 0:
 win = True
 except IndexError:
 pass
 return win
Define a back4() function to check connecting 4 diagonally in \ shape
def back4(x, y, turn):
 win = False
 for dif in (-3, -2, -1, 0):
 try:
 if occupied[x+dif][y-dif] == turn\
 and occupied[x+dif+1][y-dif-1] == turn\
 and occupied[x+dif+2][y-dif-2] == turn\
 and occupied[x+dif+3][y-dif-3] == turn\
 and x+dif >= 0 and y-dif-3 >= 0:
 win = True
 except IndexError:
 pass
 return win
Define a win_game() function to check if someone wins the game
4 def win_game(col, row, turn):
 win = False
 # Convert column and row numbers to indexes in the list of lists occupied
 x = col-1
 y = row-1
 # Check all winning possibilities
 if vertical4(x, y, turn) == True:
 win = True
 if horizontal4(x, y, turn) == True:
 win = True
 if forward4(x, y, turn) == True:
 win = True
 if back4(x, y, turn) == True:
 win = True
 # Return the value stored in win
 return win
--snip--

Listing 11-4: First half of the script to disallow invalid moves and declare wins and ties

We import the messagebox module from the tkinter package to allow us to
display messages about wins, ties, and invalid moves.

At 1, we create the list validinputs to keep track of valid moves. All
seven columns are valid to start with. If a column contains six discs, it will
be removed from the list.

216 Chapter 11

A player can win the game by collecting four discs in a row in one of
four orientations: horizontally, vertically, diagonally in a forward-slash fash-
ion (/), or diagonally in a backslash fashion (\). Therefore, we define four
functions to check for each way of winning.

At 2, we define horizontal4(), which checks if a player has won the game
by successfully connecting four discs in a row horizontally. In the function,
we create the variable win and assign a default value of False. The function
then checks whether the player has connected four discs horizontally. If yes,
the value of win changes to True. When the function horizontal4() is called,
it returns the value stored in the variable win. Let’s look at the details of this
function.

We’ll use x = col-1 and y = row-1 to convert column and row numbers
on the game board to indexes in the occupied list. The cell with column
number col and row number row corresponds to occupied[x][y] in occupied.
For simplicity, we’ll call this cell [x][y] for the rest of the chapter.

A player can connect four pieces horizontally in four ways:

•	 Cells [x-3][y], [x-2][y], and [x-1][y] all have the same color as cell [x][y].

•	 Cells [x-2][y], [x-1][y], and [x+1][y] all have the same color as cell [x][y].

•	 Cells [x-1][y], [x+1][y], and [x+2][y] all have the same color as cell [x][y].

•	 Cells [x+1][y], [x+2][y], and [x+3][y] all have the same color as cell [x][y].

We therefore define a variable dif to iterate through four values (-3,
-2, -1, 0). For each value of dif, we check whether all four cells—[x+dif][y],
[x+dif+1][y], [x+dif+2][y], and [x+dif+3][y]—have the same color. If yes, we
change the value of win to True.

In the process, we need to make exceptions for IndexError because, for
example, the value of x+3 may be 8, but the board has only seven columns.
If we do not make exceptions for IndexError, the script will crash in the pro-
cess of checking whether the player has won the game.

Further, we ensure that none of the indexes have negative values, because
negative indexing has a very specific meaning in Python. In Python, a nega-
tive index wraps around to the beginning of the list instead of falling off at
the end. For example, index -1 refers to the last element in a list in Python,
-2 to the second to last, and so on. Negative indexing will not raise an
IndexOutOfBounds error, but it will also not behave as you expect.

Let’s look at a concrete example: for x = 1 and y = 2, when the script
checks the cell [x-3][2], it will look at cell [-2][2], which is actually cell [5]
[2] because -2 refers to the second-to-last value in x, which is 5 (that is, the
sixth column, since there is a total of seven columns). Therefore, we put
the condition x+dif> = 0 in the function to ensure that we have no negative
indexing anywhere.

Finally, we use try and except in every one of the four cases of winning by
connecting four discs horizontally. If instead we had used just one set of try
and except for all four cases of wins, whenever any IndexError occured, the
script would skip all remaining cases and go to the except branch directly.
This would cause the script to fail to identify many cases of wins.

Connect Four 217

Similarly, we define vertical4() to check for a win by connecting four
discs in a row vertically 3. Then forward4() checks for a forward diagonal
win, and back4() checks for a backward diagonal win.

At 4, we define win_game(), which checks for a win in any of the 13 win
scenarios (four horizontally, one vertically, four diagonally in a forward-
slash fashion, and four diagonally in a backslash fashion). In win_game(), we
create the variable win and assign a default value of False. The function first
converts column and row numbers, col and row, to indexes in the occupied
list, x and y. The function then calls the four functions just defined to see if
the player may have won. If any of the four functions returns a value of True,
the value of win changes to True, and win_game() will return a value of True
when it’s called.

Now let’s examine the second half of the script (which we are saving as
conn_click.py), shown in Listing 11-5.

--snip--
Count the number of rounds
1 rounds=1
Define a function conn() to place a disc in a cell
def conn(x,y):
 # Declare global variables
 2 global turn, rounds, validinputs
 # Calculate the column number based on x and y values
 if -350<x<350 and -300<y<300:
 col = int((x+450)//100)
 else:
 print('You have clicked outside the game board!')
 # Check if it's a valid move
 if col in validinputs:
 # Calculate the lowest available row number in that column
 row = len(occupied[col-1])+1
--snip--
 # Go to the cell and place a dot of the player's color
 t.up()
 t.goto(xs[col-1],ys[row-1])
 t.dot(80,turn)
 t.update()
 # Add the move to the occupied list to keep track
 occupied[col-1].append(turn)
Check if the player has won
 3 if win_game(col, row, turn) == True:
 # If a player wins, invalid all moves, end the game
 validinputs = []
 messagebox.showinfo\
 ("End Game",f"Congrats player {turn}, you won!")
 # If all cells are occupied and no winner, it's a tie
 elif rounds == 42:
 messagebox.showinfo("Tie Game","Game over, it's a tie!")
 # Counting rounds
 rounds += 1

 # Update the list of valid moves
 4 if len(occupied[col-1]) == 6:

218 Chapter 11

 validinputs.remove(col)
 # Give the turn to the other player
 if turn == "red":
 turn = "yellow"
 else:
 turn = "red"
 # If col is not a valid move, show error message
 5 else:
 messagebox.showerror("Error","Sorry, that's an invalid move!")

Bind the mouse click to the conn() function
t.onscreenclick(conn)
t.listen()
--snip--

Listing 11-5: Second half of the script to disallow invalid moves and declare wins and ties

At 1, we create the variable rounds to keep track of the number of
rounds played, corresponding to the number of discs on the game board,
so that we can declare a tie when the number reaches 42.

We change conn() 2 to declare three global variables so that their val-
ues can be recognized both inside and outside the function. At 3, we call
win_game() to see whether anyone has won. If yes, we change validinputs to
an empty list so no further moves can be made. A message box will pop up
that says Congrats player red, you won! or Congrats player yellow, you won!

Figure 11-3 shows the red player winning a game.

Figure 11-3: Red wins! The darker discs are red, and the lighter are yellow.

If no one has won but rounds reaches 42, the script declares a tie game
(Figure 11-4).

Connect Four 219

Figure 11-4: A tied game

If no player has won or the game is not tied, we increase the value of
rounds by one and assign the turn to the other player. We also update the list
of valid moves. If the number of discs in the current column reaches six, we
remove the column number from the list validinputs 4.

During the game, if a player clicks an invalid cell 5, a message box will
say Sorry, that's an invalid move! (Figure 11-5).

Figure 11-5: An invalid move

220 Chapter 11

T RY IT OU T

Run conn_click.py and play a few games against yourself. Try to generate the
following three instances: you make an invalid move, player yellow wins the
game, and the game is tied.

 The Voice-Controlled Version
Now we’re ready to add the voice control functionality!

First, we’ll set the computer as your opponent in the game. After you
make a move as the red player, the computer will randomly select a yellow
move until the game ends. Once you understand how playing against a
computer works, a voice-controlled game in which you play against another
person is really simple. I’ll leave that as an end-of-chapter exercise, and the
script is provided at the book’s resources website.

N O T E We discuss only the one-player version in which you always move first to save space
and to focus on creating a voice-controlled Connect Four. In our ultimate VPA in
Chapter 17, you’ll see a generalized version of the game in which you can choose to
play against a computer or a human and whether you move first or second.

Download conn_hs.py from the book’s resources and save it in your
chapter folder. Listing 11-6 highlights the differences between conn_hs.py
and conn_click.py.

import turtle as t
from time import sleep
from tkinter import messagebox
from random import choice

Import functions from the local package
from mptpkg import voice_to_text, print_say

Set up the screen
--snip--
Create a list of valid moves
validinputs = ['1','2','3','4','5','6','7']
--snip--
Add a dictionary of words to replace
to_replace = {'number ':'', 'cell ':'',
 'one':'1', 'two':'2', 'three':'3',
 'four':'4', 'for':'4', 'five':'5',
 'six':'6', 'seven':'7'}
Start an infinite loop to take voice inputs
1 while True:
 # Ask for your move

Connect Four 221

 print_say(f"Player {turn}, what's your move?")
 # Capture your voice input
 inp = voice_to_text().lower()
 print_say(f"You said {inp}.")
 for x in list(to_replace.keys()):
 inp = inp.replace(x, to_replace[x])
 # If it is not a valid move, try again
 if inp not in validinputs:
 print_say("Sorry, that's an invalid move!")
 # If your voice input is a valid move, play the move
 2 else:
 col = int(inp)
 # Calculate the lowest available row number in that column
 row = len(occupied[col-1])+1
 # Show the disc fall from the top
 if row<6:
 for i in range(6,row,-1):
 fall.goto(xs[col-1],ys[i-1])
 fall.dot(80,turn)
 t.update()
 sleep(0.05)
 fall.clear()
 # Go to the cell and place a dot of the player's color
 t.up()
 t.goto(xs[col-1],ys[row-1])
 t.dot(80,turn)
 t.update()
 # Add the move to the occupied list to keep track
 occupied[col-1].append(turn)

 # Check if the player has won
 if win_game(col, row, turn) == True:
 # If a player wins, invalid all moves, end the game
 validinputs = []
 3 print_say(f"Congrats player {turn}, you won!")
 messagebox.showinfo/
 ("End Game",f"Congrats player {turn}, you won!")
 break
 # If all cells are occupied and no winner, it's a tie
 elif rounds == 42:
 print_say("Game over, it's a tie!")
 messagebox.showinfo("Tie Game","Game over, it's a tie!")
 break
 # Counting rounds
 rounds += 1
 # Update the list of valid moves
 if len(occupied[col-1]) == 6:
 validinputs.remove(str(col))
 # Give the turn to the other player
 if turn == "red":
 turn = "yellow"
 else:
 turn = "red"

222 Chapter 11

 # The computer randomly selects a move
 4 if len(validinputs)>0:
 col = int(choice(validinputs))
 print_say(f'The computer chooses column {col}.')
 # Calculate the lowest available row number in that column
 row = len(occupied[col-1])+1
 # Show the disc fall from the top
 if row < 6:
 for i in range(6,row,-1):
 fall.goto(xs[col-1],ys[i-1])
 fall.dot(80,turn)
 update()
 sleep(0.05)
 fall.clear()
 # Go to the cell and place a dot of the player's color
 t.up()
 t.goto(xs[col-1],ys[row-1])
 t.dot(80,turn)
 t.update()
 # Add the move to the occupied list to keep track
 occupied[col-1].append(turn)

 # Check if the player has won
 if win_game(col, row, turn) == True:
 # If a player wins, invalid all moves, end the game
 validinputs = []
 5 print_say(f"Congrats player {turn}, you won!")
 messagebox.showinfo\
 ("End Game",f"Congrats player {turn}, you won!")
 break
 # If all cells are occupied and no winner, it's a tie
 elif rounds == 42:
 print_say("Game over, it's a tie!")
 messagebox.showinfo("Tie Game","Game over, it's a tie!")
 break
 # Counting rounds
 rounds += 1
 # Update the list of valid moves
 if len(occupied[col-1])==6:
 validinputs.remove(str(col))
 # Give the turn to the other player
 if turn == "red":
 turn = "yellow"
 else:
 turn = "red"
t.done()
--snip--

Listing 11-6: Script highlights for the voice-controlled Connect Four game

We import a few extra modules. The choice() function from the random
module lets the computer randomly select a move to play against you. We
also import our local print_say() and voice_to_text() functions from the
local package mptpkg to handle the voice-control functionality.

Connect Four 223

This time, we’ll use string values instead of integers to represent the
seven column numbers in the list validinputs, because voice inputs are natu-
rally string variables and, in many cases, attempting to convert voice inputs
to integers will crash the script.

At 1, we start an infinite while loop. At each iteration, the script asks
for your move out loud. You speak into the microphone to make your move,
and the script captures your voice command and stores it in inp.

Here we did a little tweaking to make voice_to_text() more responsive
to your voice commands, as we did in Chapter 10 (see Listing 10-6 as a
reminder). Further, the script always interprets number four as number for, so
we replace for with 4 to get a better response from the script.

If your voice command is not in validinputs, the script reminds you out
loud: “Sorry, that’s an invalid move!” I’ve moved up the invalid voice input
so that the if and else branches are close together in the script, making it
easy for you to understand the logic. If the two branches are far apart, it’s
easy to get lost in the long lines of code.

If your voice command is a valid move 2, the script will place the disc
as directed, let the disc fall to the lowest available space in the column, add
the cell number to your list of occupied cells, remove the cell number from
the list of valid inputs, and so on.

The script then checks whether you won the game and, if you have,
congratulates you out loud 3. If not, it will check for a tie and announce
accordingly.

When your turn is over, and if you haven’t won or tied the game, the
computer randomly selects a move from validinputs to play against you 4,
make the move, and check whether the computer has won the game 5. It
will also check for a tie.

W A R N I N G You need a decent internet connection for the script to work properly. Further, avoid
saying a single number as the voice input. Instead, start with “number” so that the
script can put your voice command in context.

Here’s the printed message from one interaction with the game:

Player red, what's your move?
You said number four.
The computer chooses column 2.
Player red, what's your move?
You said number four.
The computer chooses column 2.
Player red, what's your move?
You said number four.
The computer chooses column 2.
Player red, what's your move?
You said number four.
Congrats player red, you won!

Figure 11-6 shows my winning game.

224 Chapter 11

Figure 11-6: Red winning the voice-controlled version

T RY IT OU T

Run conn_hs.py and play a complete game with the computer. See if you can
make the script understand your every voice command on the first try.

 Summary
In this chapter, you created a voice-controlled graphical Connect Four game
that talks back to you in a human voice. You set up the game board and
mechanisms as you did in Chapter 10, but this time animated the moves.

You learned how to let Python determine whether a player has won the
game. In the process, you learned to lay out all cases of winning and use the
script to check each one. You also learned how to properly use exception han-
dling and prevent negative indexing from causing mistakes in your script.

You added the voice recognition and text-to-speech features, but also did
a bit of refactoring to make sure your code stayed user readable as you added
to it. In the next couple of chapters, you’ll create more voice-controlled graph-
ical games and make them intelligent.

Connect Four 225

 End-of-Chapter Exercises

1. Modify conn_board.py so that six row numbers appear at the right of the
screen, with the top row being 6 and the bottom row being 1. Make the
x-coordinates of the row numbers 325.

2. Modify disc_fall.py so that the discs fall at twice the speed.

3. Modify conn_click.py so that a player wins only by connecting four discs
of the same color horizontally or diagonally, and not vertically.

4. Currently, when you play Connect Four using the final conn_hs.py, you
can say either “number four” or “four” if you want to place a disc in col-
umn 4. Modify the script so that you can also say “column four” to place
a disc in that column.

5. Modify conn_hs.py so that you play against a person instead of the
computer.

12
G U E S S - T H E - W O R D G A M E

In this chapter, you’ll build a voice-controlled
graphical guess-the-word game. This is an

interesting challenge because when playing
guess-the-word, players often talk quickly, so we’ll

need to fine-tune our script’s listening abilities.
As usual, we’ll go over the game rules and draw a game board; this

game board uses six coins to represent your six guesses. You’ll learn how to
load a picture to a Python script and create multiple images of it onscreen.
You’ll also learn to make the images disappear one by one.

We’ll start the game by using written inputs. Then, when we have it
working well, we’ll add the speech recognition and text-to-speech features.

All scripts in this chapter are available on the book’s resources page
at https:// www.nostarch.com/make-python-talk/. Start by creating the folder
/mpt/ch12/ for this chapter.

228 Chapter 12

NE W SKIL L S

• Loading a picture file into a script and manipulating it

• Creating multiple images from the same file

• Drawing messages and shapes on a turtle screen

• Coding a new set of rules

 Game Rules
Our guess-the-word game is loosely based on the hangman game. Our game
will present only four-letter words to keep it simple, but you should try adapt-
ing it later when you’re comfortable with how it all works. Let’s go over the
rules of the game first.

Similar to hangman, our guess-the-word game involves two players. The
first player thinks of a word and draws a number of dashes equal to the number
of letters in the word. The first player also draws six coins in the middle of the
screen to represent the six incorrect guesses the second player will be allowed.

The second player tries to figure out the word by guessing one letter
at a time. If the suggested letter is in the word, the first player fills in the
blanks with the letter in the right places. If a suggested letter is not in the
word, the first player erases a coin in the middle of the screen. If the second
player completes the word before making six incorrect guesses, they win
the game. If that player fails to identify the word before using up their six
wrong guesses, they lose.

 Draw the Game Board
Our game board will preload with four dashes to represent the word. We’ll
also include the message incorrect guesses onscreen. Open your Spyder edi-
tor and enter the code in Listing 12-1, saving it as guess_word_board.py.

import turtle as t

Set up the board
t.setup(600,500)
t.hideturtle()
t.tracer(False)
t.bgcolor("lavender")
t.title("Guess the Word Game in Turtle Graphics")
Define a variable to count how many guesses left
1 score = 6
Create a second turtle to show guesses left
left = t.Turtle()
left.up()
left.hideturtle()
left.goto(-290,200)
left.write(f"guesses left: {score}",font=('Arial',20,'normal'))

Guess-the-Word Game 229

Put incorrect guesses on top
t.up()
t.goto(-290,150)
t.write("incorrect guesses:",font=('Arial',20,'normal'))
Put four empty spaces for the four letters at bottom
2 for x in range(4):
 t.goto(-275+150*x,-200)
 t.down()
 t.goto(-175+150*x,-200)
 t.up()
t.done()
try:
 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 12-1: Python script to draw the guess-the-word game board

We import the turtle module and set up the screen to be 600 by 500 pixels
with a lavender background. The title will read Guess the Word Game in Turtle
Graphics. Note that we omitted the last two arguments in setup(), so the game
board will appear at the center of your computer screen by default.

At 1, we create a variable score to keep track of the number of guesses
the player has left. It starts with a value of 6. Later in the game, every time
the player guesses an incorrect letter, the value will decrease by 1. We also
create a new turtle named left, representing the number of guesses remain-
ing. We use the new turtle to write the number of chances the player has
left, erasing whatever was there before. By using a new turtle, we limit the
number of objects we need to redraw onscreen.

We then add the text incorrect guesses, which will later show the incor-
rect letters the player guessed. We draw four dashes at the bottom of the
board 3 to hold the four letters in the word. Run the script and you should
see a board similar to Figure 12-1.

Figure 12-1: The board for the guess-the-word game

230 Chapter 12

 The Text Version
In this section, you’ll place the six coins on the screen and enable the player
to enter letters with the keyboard. You’ll then determine whether a player has
won or lost the game. This completes the silent version of guess-the-word.

Load the Coins
You’ll place six coins at the center of the screen. In the process, you’ll learn
how to load a picture to the script, resize it to any shape you like, and place
as many objects on the turtle screen as you like. As noted, each coin corre-
sponds to one incorrect guess.

Download the picture file cash.png from the book’s resources and place
it in your chapter folder. Open guess_word_board.py, add the highlighted
code in Listing 12-2, and save the new script as show_coins.py in the same
chapter folder containing cash.png.

--snip--
from tkinter import PhotoImage
from time import sleep
--snip--
Put four empty spaces for the four letters at bottom
for x in range(4):
 t.goto(-275+150*x,-200)
 t.down()
 t.goto(-175+150*x,-200)
 t.up()
Load a picture of the coin to the script
1 coin = PhotoImage(file="cash.png").subsample(10,10)
t.addshape("coin", t.Shape("image", coin))
Create six coins on screen
2 coins = [0]*6
for i in range(6):
 coins[i] = t.Turtle('coin')
 coins[i].up()
 coins[i].goto(-100+50*i,0)
t.update()
3 sleep(3)
Make the coins disappear one at a time
for i in range(6):
 coins[-(i+1)].hideturtle()
 t.update()
 sleep(1)
t.done()
--snip--

Listing 12-2: Script to show and remove coins

We import the PhotoImage() class from the tkinter module and the
sleep() function from the time module. We then load cash.png by using
PhotoImage() 1. We use subsample() to scale the image to the size we want. In
this case, we use scale factors of (10,10), which means that both the width
and the height of the picture are one-tenth that of the original picture.

Guess-the-Word Game 231

N O T E To scale up the size of the image onscreen, you can use the zoom() method in the
PhotoImage() class from tkinter. For example, zoom(2,3) will double the width and
triple the height of the original picture.

At 2, we create a list coins with six elements by using [0]*6. If you print
out the list, it will look like this:

[0, 0, 0, 0, 0, 0]

We’ll change the elements later; the 0 values are just placeholders.
Next, we create a new turtle in each element in coins. We then make the

coin turtles go to the center of the screen and line up horizontally. To dem-
onstrate how to load and then hide the coins, we have them stay onscreen for
three seconds 3 before using hideturtle() from the turtle module to make
them disappear from the screen one at a time, starting with the last one.

Figure 12-2 shows the screen in the first three seconds, as the coins are
lined up.

Figure 12-2: Showing coins on the guess-the-word game board

T RY IT OU T

Run show_coins.py and see the output screen. Once you confirm it’s working,
change tracer(False) to tracer(True) in the script and rerun it. You should
be able to see the six coins placed onscreen one by one. After that, change
tracer(True) back to tracer(False) before continuing to the next subsection.

Guess the Letters
The next version of the game will use 15 four-letter words, picked from a list
of the most commonly used four-letter words according to Professor Barry
Keating’s website at the University of Notre Dame (https://bit.ly/3g7z7cg).

232 Chapter 12

Keating has done extensive work in the fields of business forecasting and
data mining. He is also the coauthor of the popular textbook Forecasting and
Predictive Analytics (McGraw Hill, 2018).

After we make the following modifications, the script will randomly
choose one word, ask you to guess a letter, and then accept input from the
IPython console. If a guess is right, the letter will show up on one of the
dashes corresponding to the position of the letter in the word. In the rare
case that the letter appears in the word twice, the letter will show up on two
of the dashes. If the letter is not in the word, it will show up at the top of the
screen in the list of incorrect guesses. We’ll skip placing the coins in this
script to make testing of the code easier to follow.

Open guess_word_board.py, add the highlighted code in Listing 12-3,
and save the new script as guess_letter.py.

import turtle as t
from random import choice
--snip--
Put four empty spaces for the four letters at bottom
for x in range(4):
 t.goto(-275+150*x,-200)
 t.down()
 t.goto(-175+150*x,-200)
 t.up()
t.update()
Put words in a dictionary and randomly pick one
1 words = ['that', 'with', 'have', 'this', 'will', 'your',
 'from', 'they', 'know', 'want', 'been',
 'good', 'much', 'some', 'time']
word = choice(words)
Create a missed list
2 missed = []
Start the game loop
3 while True:
 # Take written input
 inp = input("What's your guess?\n").lower()
 # Stop the loop if you key in "done"
 if inp == "done":
 break
 # Check if the letter is in the word
 4 elif inp in list(word):
 # If yes, put it in the right position(s)
 for w in range(4):
 if inp == list(word)[w]:
 t.goto(-250+150*w,-190)
 t.write(inp,font=('Arial',60,'normal'))
 # If the letter is not in the word, show it at the top
 5 else:
 missed.append(inp)
 t.goto(-290+80*len(missed),60)
 t.write(inp,font=('Arial',60,'normal'))
 # Update everything that happens in the iteration
 t.update()
try:

Guess-the-Word Game 233

 t.bye()
except t.Terminator:
 print('exit turtle')

Listing 12-3: Script to put letters on the game board

We first import choice() from the random module so the script can ran-
domly pick a word from the list. We put the 15 words in the list words 1 and
allocate the randomly selected word to word. At 2, we create the list missed
to hold all incorrectly guessed letters. We then put the script in an infinite
loop 3 to continuously take your text input. If you want to stop the loop,
you can enter done in the Spyder IPython console.

At 4, we check whether the letter you guess is in one of the letters in
word. We use list(), which takes a string variable as input and breaks it into
a list of individual letters; for example, the command list("have") produces
the list ["h","a","v","e"].

If your guessed letter is in word, the function checks every letter in word
to see if your guess matches the letter in that position. If so, the function
writes the letter on the corresponding position onscreen.

If your guess is not in word 5, the letter is added to missed and is written
at the top of the screen in the incorrect guesses section.

Note that we also removed the line t.done() in this script. This means
that, once you finish guessing and enter done, the script will end and every-
thing will disappear from your screen.

Here’s the output from one exchange with the script, when the script
randomly selected the word have from the list of the 15 words, with my
typed input in bold:

What's your guess?
a
What's your guess?
b
What's your guess?
v
What's your guess?
v
What's your guess?
b
What's your guess?
h
What's your guess?
e
What's your guess?
f
What's your guess?
g
What's your guess?
h
What's your guess?
u
What's your guess?
done

234 Chapter 12

Figure 12-3 shows the resultant screen.

Figure 12-3: A guess-the-word game board with letters on it

It’s working, but you may have noticed that some things need improve-
ment. To have a complete version of guess-the-word, we need the script to
do the following:

1. Prevent the players from guessing the same letter more than once.
In my preceding interaction, I guessed b, v, and h twice, wasting my
guesses.

2. Notify the players when a word is complete.

3. Stop taking input after a player completes the word.

4. Put the six coins onscreen and remove one every time a player misses a
letter.

Determine Valid Guesses, Wins, and Losses
Next, we’ll disallow duplicate-letter guesses, declare a win if you complete
the word while missing fewer than six letters, and declare a loss if not.

Open guess_letter.py and add the highlighted parts in Listing 12-4. Then
save the new script as guess_word.py. A block of code in guess_letter.py is modified
and replaced by the newly added blocks. If you’re uncertain what’s different,
download the script guess_word.py from the book’s resources page.

import turtle as t
from random import choice
from tkinter import messagebox
from tkinter import PhotoImage

--snip--
Create a missed list

Guess-the-Word Game 235

missed = []
Load a picture of the coin to the script
1 coin = PhotoImage(file = "cash.png").subsample(10,10)
t.addshape("coin", t.Shape("image", coin))
Create six coins on screen
coins = [0]*6
for i in range(6):
 coins[i] = t.Turtle('coin')
 coins[i].up()
 coins[i].goto(-100+50*i,0)
2 t.update()
Prepare the validinputs and gotright lists
3 validinputs = list('abcdefghijklmnopqrstuvwxyz')
gotright = []
Start the game loop
while True:
 # Take written input
 inp = input("What's your guess?\n").lower()
 # Stop the loop if you key in "done"
 if inp == "done":
 break
 # If the letter is not a valid input, remind
 elif inp not in validinputs:
 messagebox.showerror("Error","Sorry, that's an invalid input!")
 # Otherwise, go ahead with the game
 4 else:
 # Check if the letter is in the word
 if inp in list(word):
 # If yes, put it in the right position(s)
 for w in range(4):
 if inp == list(word)[w]:
 t.goto(-250+150*w,-190)
 t.write(inp,font = ('Arial',60,'normal'))
 gotright.append(inp)
 # If got four positions right, the player wins
 if len(gotright) == 4:
 messagebox.showinfo\
 ("End Game","Great job, you got the word right!")
 break
 # If the letter is not in the word, show it at the top
 5 else:
 # Reduce guesses left by 1
 score -= 1
 # Remove a coin
 coins[-(6-score)].hideturtle()
 # Update the number of guesses left on board
 left.clear()
 left.write\
 (f"guesses left: {score}",font = ('Arial',20,'normal'))
 t.update()
 missed.append(inp)
 t.goto(-290+80*len(missed),60)
 t.write(inp,font = ('Arial',60,'normal'))
 if len(missed) == 6:
 # If all six chances are used up, end game

236 Chapter 12

 messagebox.showinfo\
 ("End Game","Sorry, you used up all your six guesses!")
 break
 # Remove the letter from the validinputs list
 validinputs.remove(inp)
 # Update everything that happens in the iteration
 t.update()
--snip--

Listing 12-4: A graphical guess-the-word game that takes written input

We import the messagebox module from the tkinter Python package again
so we can display messages to the game screen.

Starting at 1, we display the six coins onscreen. We update the screen
so that everything we put there shows up properly 2.

At 3, we create the list validinputs, which has the 26 letters in the alpha-
bet as elements. Later in the script, if the player guesses a letter, we’ll remove
the letter from the list so that the same letter can’t be guessed more than
once. We also create the empty list gotright. Later we’ll use it to keep track of
how many positions the player has guessed right in the word.

We start an infinite while loop that asks for your keyboard input in every
iteration. If you enter done, the loop stops, and the script quits taking input
from you. If you enter invalid input (either a non-letter or a letter you’ve
already guessed), the script will show a message box indicating Sorry, that's
an invalid input!

If you enter valid input 4, the script checks whether the letter is in the
word. If yes, the script checks each of the four positions in the word and,
for each match, adds the letter to the list gotright. Note that since the same
letter can appear in a word more than once, a letter may be added to the list
gotright more than once.

The script then checks whether gotright has four elements. If yes, it
means all four letters have been correctly guessed, and a message box will
pop up with Great job, you got the word right!

If the guessed letter is not in the word 5, the value of score is decreased
by one, meaning the player has one less guess left. The script will remove
a coin from the screen by using hideturtle(). The second turtle will erase
whatever it has drawn on the screen and rewrite the number of guesses left.
If the length of the list missed reaches six, a message box appears: Sorry, you
used up all your six guesses!

Here’s one exchange with the script with the user input in bold:

What's your guess?
a
What's your guess?
o
What's your guess?
d
What's your guess?
c
What's your guess?
b

Guess-the-Word Game 237

What's your guess?
k
What's your guess?
m

My losing game is shown in Figure 12-4.

N O T E Since the word is randomly chosen from the 15 words, you won’t likely get the same
output as mine even if you use the same guesses.

Figure 12-4: A losing game of guess-the-word

T RY IT OU T

Run guess_word.py and play a few games, generating the following instances:
you make an invalid move, you win the game by completing the word before
missing six letters, and you fail to complete the word before missing six letters
and hence lose the game.

 The Voice-Controlled Version
Now we’ll build on the written-input version of the game to add speech
functionality. Download guess_word_hs.py and save it in your chapter folder.
The new code is highlighted in Listing 12-5.

--snip--
Import functions from the local package
from mptpkg import voice_to_text, print_say

238 Chapter 12

--snip--
Start the game loop
1 while True:
 # Ask for your move
 print_say("What's your guess?")
 # Capture your voice input
 inp = voice_to_text().lower()
 print_say(f"you said {inp}")
 inp = inp.replace('letter ','')
Say "stop listening" or press CTRL-C to stop the game
 if inp == "stop listening":
 break
 # If the letter is not a valid input, remind
 elif inp not in validinputs:
 print_say("Sorry, that's an invalid input!")
 # Otherwise, go ahead with the game
 2 else:
 # Check if the letter is in the word
 if inp in list(word):
 # If yes, put it in the right position(s)
 for w in range(4):
 if inp == list(word)[w]:
 t.goto(-250+150*w,-190)
 t.write(inp,font = ('Arial',60,'normal'))
 gotright.append(inp)
 # If got four positions right, the player wins
 if len(gotright) == 4:
 3 print_say("Great job, you got the word right!")
 messagebox.showinfo\
 ("End Game","Great job, you got the word right!")
 break
 # If the letter is not in the word, show it at the top
 else:
 # Reduce guesses left by 1
 score -= 1
 # Remove a coin
 coins[-(6-score)].hideturtle()
 # Update the number of guesses left on board
 left.clear()
 left.write\
 (f"guesses left: {score}",font = ('Arial',20,'normal'))
 t.update()
 missed.append(inp)
 t.goto(-290+80*len(missed),60)
 t.write(inp,font = ('Arial',60,'normal'))
 if len(missed) == 6:
 # If all six changes are used up, end game
 4 print_say("Sorry, you used up all your six guesses!")
 messagebox.showinfo\
 ("End Game","Sorry, you used up all your six guesses!")
--snip--

Listing 12-5: A graphical guess-the-word game that takes voice input

Guess-the-Word Game 239

We import the usual functions from our local package mptpkg: voice_to_
text() and print_say(). Because we installed the package (in editable mode),
there’s no need to tell the system where to find it.

We start an infinite while loop that asks for your choice of letter in each
iteration 1. You speak your guess into the microphone, and the script cap-
tures your voice command and stores it in inp. We make allowances so the
player can say either “letter a” or just “a.” If the former, we replace letter with
an empty string so that only a is left in the variable inp.

To stop the while loop, you say, “Stop listening.” If your guess is not in the
list validinputs, the script will answer, “Sorry, that’s an invalid input!” out loud.
If your guess is in validinputs 2, the script checks whether the letter is in the
word. This time, when you complete the word without missing six times, the
game will say, “Great job, you got the word right!” 3. If you guess wrong six
times, the voice will say, “Sorry, you used up your six guesses!” 4.

Here’s an exchange with the script in which the player has successfully
guessed the word good, missing only two letters:

What's your choice?
you said letter a
What's your choice?
you said letter d
What's your choice?
you said letter f
What's your choice?
you said letter o
What's your choice?
you said letter g
Great job, you got the word right!

You can see the screen in Figure 12-5.

Figure 12-5: Winning the voice-controlled guess-the-word game

240 Chapter 12

T RY IT OU T

Run guess_word_hs.py and try giving voice input in a few different ways to see
what the script best understands.

 Summary
In this chapter, you created a voice-controlled graphical guess-the-word
game that talks back to you in a human voice.

You first learned how to draw the game board. You then learned to
upload a picture file to the script and scale it to the size you want. You used
the image to create six coins on the screen to represent monetary rewards
and made them disappear from the screen one by one. You also learned
how to type in your guess and have it show up onscreen. You learned how
to disallow guessing the same letter twice and how to determine whether a
player has won or lost the game.

You added the speech recognition and text-to-speech features so that
the game can be voice controlled. Along the way, you learned how to create
an image by manipulating a picture file in turtle and how to use multiple
turtles to reduce the number of objects you have to redraw on the screen.

 End-of-Chapter Exercises

1. Modify show_coins.py so that the positions of the six coins are 10 pixels
below their current positions vertically. Keep the positions of every-
thing else the same.

2. Modify show_coins.py so that the leftmost coin disappears from the
screen first and the rightmost one is the last to disappear.

3. Try to figure out what the following line of code will produce. First
write down your answer and then run the code in Spyder to verify.

list('Hi Python')

13
S M A R T G A M E S :

A D D I N G I N T E L L I G E N C E

In the one-player version of Connect Four
we built in Chapter 11, the computer always

randomly selects a move. This allowed us to
focus on the game’s speech recognition and

text-to-speech aspects.
However, once you play against the random computer for a few games,

you start to wonder if there’s a way to make our Connect Four game more
challenging. The answer is yes, and in this chapter, you’ll learn to make an
intelligent Connect Four opponent.

In one approach, we’ll ask the script to think three steps ahead, as people
do when playing a game: two moves by the computer and one by the player.

In the first step, the computer checks whether a move leads to winning
the game right away. If yes, the computer will take it.

Thinking two steps ahead in Connect Four means the computer tries
to prevent the opponent from winning in the next turn. This is compli-
cated, because sometimes the computer must block a position and other
times it must avoid taking a position. The computer will distinguish these

242 Chapter 13

two cases and block some moves and avoid others to prevent the oppo-
nent from winning.

By thinking three steps ahead, the computer will follow the path that
most likely leads to a victory for the computer after three moves. In many
scenarios, thinking three steps ahead can guarantee a win in three steps. In
particular, if there is a move that guarantees the computer to win in three
moves, the computer will select that as the best next move.

The second method uses an approach that could be classified as a type
of machine learning. You’ll simulate a million games in which both players
select random moves. You’ll then record the outcome and the intermediate
steps. With this data, the computer will learn at each move and select the
one most likely to lead to a winning outcome.

We’ll assess the effectiveness of the two strategies and choose the one
that is more difficult to beat. We’ll then add speech recognition and text-to-
speech features to the intelligent Connect Four.

Along the way, I’ll also challenge you to apply the same methods to the
tic-tac-toe game in the “End-of-Chapter Exercises” on page 267. As always,
all scripts are available at https://www.nostarch.com/make-python-talk/, and you
should create the folder /mpt/ch13/ for this chapter.

NE W SKIL L S

• Getting your computer games to think one, two, and three steps ahead

• Understanding the difference between deepcopy and assignment statements

• Creating simulated games

• Using basic machine-learning skills to create intelligent games

• Using pickle to save and open data files

• Testing the effectiveness of game strategies

 The Think-Three-Steps-Ahead Strategy
We’ll first use the mouse-click version of Connect Four to speed up the
testing of scripts. After we incorporate the strategy of thinking three steps
ahead, we’ll add the speech features back.

Think One Step Ahead
Thinking one step ahead in Connect Four is easy. The computer checks all
possible next moves, and if one of them will lead to a win right away, the
computer will take it.

Download conn_think1.py from the book’s resources and save it in your
chapter folder. This is based on the script conn_click.py in Chapter 11, but
I’ve altered the code so that you’re playing against an automated player that
thinks one step ahead rather than another human player.

https://www.nostarch.com/make-python-talk/

Smart Games: Adding Intelligence 243

N O T E In Chapter 17, you’ll learn how to choose your opponent: a human player, a simple
automated player (computer) that chooses random moves, or an automated player
that chooses smart moves.

Listing 13-1 highlights the key parts of conn_think1.py.

--snip--
from random import choice
from copy import deepcopy
--snip--
Define a horizontal4() function to check connecting 4 horizontally
1 def horizontal4(x, y, color, board):
 win = False
 for dif in (-3, -2, -1, 0):
 try:
 if board[x+dif][y] == color\
 and board[x+dif+1][y] == color\
 and board[x+dif+2][y] == color\
 and board[x+dif+3][y] == color\
 and x+dif >= 0:
 win = True
 except IndexError:
 pass
 return win
Define a vertical4() function to check connecting 4 vertically
def vertical4(x, y, color, board):
--snip--
Define a win_game() function to check if someone wins the game
2 def win_game(num, color, board):
 win = False
 # Convert column and row numbers to indexes in the list of lists board
 x = num-1
 y = len(board[x])-1
 # Check all winning possibilities
 if vertical4(x, y, color, board) == True:
 win = True
 if horizontal4(x, y, color, board) == True:
 win = True
 if forward4(x, y, color, board) == True:
 win = True
 if back4(x, y, color, board) == True:
 win = True
 # Return the value stored in win
 return win
 --snip--
Define the best_move() function
3 def best_move():
 # Take column 4 in the first move
 if len(occupied[3]) == 0:
 return 4
 # If only one column has free slots, take it
 if len(validinputs) == 1:

244 Chapter 13

 return validinputs[0]
 # Otherwise, see what will happen in the next move hypothetically
 4 winner = []
 # Go through all possible moves and see if there is a winning move
 for move in validinputs:
 tooccupy = deepcopy(occupied)
 tooccupy[move-1].append('red')
 if win_game(move,'red',tooccupy) == True:
 winner.append(move)
 # If there is a winning move, take it
 if len(winner)>0:
 return winner[0]
5 def computer_move():
 global turn, rounds, validinputs
 # Choose the best move
 col = best_move()
 if col == None:
 col = choice(validinputs)
 # Calculate the lowest available row number in that column
 row = 1+len(occupied[col-1])
--snip--
 # Check if the player has won the game
 6 if win_game(col, turn, occupied) == True:
--snip--
Computer moves first
computer_move()
Define a function conn() to place a disc in a cell
def conn(x,y):
 # Declare global variables
 global turn, rounds, validinputs
--snip--
 7 if win_game(col, turn, occupied) == True:
--snip--
 # Computer moves next
 if len(validinputs)>0:
 computer_move()
--snip--

Listing 13-1: Think one step ahead in the Connect Four game.

We import all needed modules. In particular, we import choice() from
the random module and deepcopy() from the copy module. The copy module is
in the Python standard library, so no installation is needed.

To search for the best strategy, we’ll look one step ahead and see what
would happen hypothetically if certain actions were taken. We need deepcopy()
to copy a list without altering the original list. We can’t simply use assignment
statements in this script when copying lists. Assignment statements in Python
create a link to the original list object, so if we alter the copy, we alter the origi-
nal as well. Altering the original list is not what we intend and would cause
unexpected behavior.

Smart Games: Adding Intelligence 245

W A R N I N G Assignment statements in Python don’t copy objects. Instead, they create bindings
between a target and an object. If we use an assignment statement to create a copy of
the list occupied in conn_think1.py and make changes to the copy, the original will
be altered as well.

At 1, we make horizontal4(x,y,color,board)more general so that it can
be applied to any four arguments. Later in the script, we’ll use it to check
whether certain moves win the game by collecting four discs horizontally in
a hypothetical situation. We define the functions vertical4(), forward4(), and
back4() in a similar way.

At 2, we define win_game(num,color,board), which checks whether the player
has won in any of the preceding four scenarios. We’ve also omitted the row
number as an argument because it will be inferred from the argument board.

The main action is in best_move(), starting at 3. This function searches
for the best move for the computer (the red player). If column 4 is empty,
the computer takes the center column. Since the red player moves first, this
line of code ensures that the very first move of the game is always the center
column 4, giving whoever makes the first move an advantage.

N O T E Since our goal in this chapter is to make Connect Four more challenging, we let the
computer move first. However, letting the human play first is straightforward, and
we’ll leave that as an exercise at the end of the chapter. In Chapter 17 you’ll see how to
choose who plays first.

If only one move is left (that is, six columns are full and only one col-
umn has empty cells), there’s no point searching for a best move, so the
computer takes the only remaining move.

If more than one move remains, the function checks every possible
move to see if any will lead to a win for the computer right away. The script
creates the list winner to contain the potentially winning moves 4. We go
through all possible next moves. We use win_game() to check whether a move
will win the game hypothetically. If yes, the move is added to winner. The
function then checks whether winner is empty, and if it isn’t, the computer
takes the first available move in the list.

We then define computer_move()5. When called, this function tells the
computer to make the move produced by best_move(). The computer then
places a disc in the corresponding column. Once the computer places the
disc, the script uses win_game() to check if the move wins the game 6.

The computer makes the first move of the game. After that, we define
conn(), which allows you to click the screen to play your move. The script
checks whether your move wins the game 7. The computer will move after
you if the game isn’t over.

Run the script several times and play against the computer. You’ll
notice that the computer will always take the winning move if there is one.
For example, at the left of Figure 13-1, an opportunity emerges for the red
player to take column 7 and win the game. The computer thinks one step
ahead and takes the winning move.

246 Chapter 13

Figure 13-1: A Connect Four game that thinks one step ahead

T RY IT OU T

Run conn_think1.py and create opportunities for the computer to win. See if the
computer takes the winning move right away.

Think Two Steps Ahead
Thinking two steps ahead in Connect Four is a little complicated. The com-
puter’s next move can either block the opponent (which is you) or help the
opponent’s chance of winning the game on the next turn.

We’ll separate these two cases: if the computer’s move blocks the oppo-
nent’s chance of winning, the script will take it; if the computer’s move
helps the opponent’s chance of winning, the script will avoid it. Let’s use
examples to demonstrate the two cases.

Moves to Avoid

In this example, the computer should avoid a certain move so that the
opponent won’t win on the next turn.

At the left of Figure 13-2, it’s the red player’s turn. If the red player
chooses column 6 as the next move, the opponent can win on the following
turn, as shown on the right in the figure. Therefore, the red player should
avoid this move.

Smart Games: Adding Intelligence 247

Figure 13-2: The red player should avoid column 6 in this example.

Here, the red player has made a move that allows yellow to win. We can
avoid that win with this rule: if you make a next move x, and your opponent
places a disc in the same column x two steps ahead and wins the game, you
should avoid the move x in the next step.

Moves to Block

In the next case, the computer should block a certain move so the oppo-
nent won’t win in two steps.

At the left in Figure 13-3, it’s the red player’s turn. If the red player
doesn’t choose column 3 in the next move, the opponent can choose col-
umn 3 and win on the following turn. Therefore, the red player should
block this move.

Figure 13-3: The red player should block column 3.

248 Chapter 13

Here, the red player makes a different move—column 6—and loses the
game. So the rule is as follows: if red makes the next move, x, and the yellow
opponent can make a different move y within two steps and win, red should
block yellow’s move y in the next step.

Implement the Think-Two-Steps-Ahead Strategy
Let’s allow the computer to think up to two steps ahead by using the three
techniques just discussed (one for thinking one step ahead, two for think-
ing two steps ahead).

Open conn_think1.py, replace its best_move() with the new best_move()
function defined in Listing 13-2, and save the new script as conn_think2.py in
your chapter folder (or you can download it from the book’s resources).

--snip--
Define the best_move() function
def best_move():
 # Take column 4 in the first move
 if len(occupied[3]) == 0:
 return 4
 # If only one column has free slots, take it
 if len(validinputs) == 1:
 return validinputs[0]
 # Otherwise, see what will happen in the next move hypothetically
 winner = []
 # Go through all possible moves and see if there is a winning move
 1 for move in validinputs:
 tooccupy = deepcopy(occupied)
 tooccupy[move-1].append('red')
 if win_game(move,'red',tooccupy) == True:
 winner.append(move)
 # If there is a winning move, take it
 if len(winner)>0:
 return winner[0]
 # If no winning move, look two steps ahead
 2 if len(winner) == 0 and len(validinputs)>=2:
 loser = []
 # Check if your opponent has a winning move
 for m1 in validinputs:
 for m2 in validinputs:
 if m2 != m1:
 tooccupy = deepcopy(occupied)
 tooccupy[m1-1].append('red')
 tooccupy[m2-1].append('yellow')
 if win_game(m2, 'yellow',tooccupy) == True:
 winner.append(m2)
 if m2 == m1 and len(occupied[m1-1]) <= 4:
 tooccupy2 = deepcopy(occupied)
 tooccupy2[m1-1].append('red')
 tooccupy2[m2-1].append('yellow')
 if win_game(m2,'yellow',tooccupy2) == True:
 loser.append(m2)
 # If your opponent has a winning move, block it
 if len(winner)>0:
 return winner[0]

Smart Games: Adding Intelligence 249

 # If you can make a move to help your opponent to win, avoid it
 3 if len(loser)>0:
 myvalids = deepcopy(validinputs)
 for i in range(len(loser)):
 myvalids.remove(loser[i])
 if len(myvalids)>0:
 return choice(myvalids)
--snip--

Listing 13-2: Allow the computer to think up to two steps ahead.

In the newly defined function best_move(), the script searches for the best
move based on discs currently on the board. If this is the very first move of
the game, the function takes the column in the middle. If only one move is
left, the function defines the best move to be the only move left.

If more than one move remains, the function checks every possible move
to see if any will lead to a win for the red player (the computer) right away 1. If
yes, the function returns the move as the best move and stores it in winner. If not,
the function will look two steps ahead to see if the opponent can win within two
steps 2.

The function checks two separate cases: if the red player’s move m1 (the
first move) and the yellow player’s move m2 (the second move) lead to a win
for the yellow player in two steps, we add the move m2 to the list winner. If the
red player’s move m1 and the yellow player’s move m2=m1 lead to a win for the
yellow player in two steps, we add the move m2 to the list loser.

The script checks whether winner is empty. If it isn’t, the computer will select
the opponent’s winning move to block the opponent from winning. Otherwise, the
computer will check whether the list loser is empty. If not, the computer will avoid
all elements in loser so as not to help the opponent win 3.

Run conn_think2.py and play a few times against the computer. You’ll notice
an improvement in the game in the sense that the computer can now think two
steps ahead and try to prevent you from winning on your next turn.

T RY IT OU T

Run conn_think2.py and try to win the game yourself. Pay attention to whether
the computer prevents you from winning if such opportunities arise.

Think Three Steps Ahead
This next section will allow the computer to think up to three steps ahead
before taking its turn. If the computer has no winning move in the next
step and the opponent has no winning moves two steps ahead, the com-
puter will look three steps ahead.

The computer will take the next move that most likely leads to a win in
three steps. In particular, if there’s a next move that guarantees the computer
to win in three steps, the computer will select that next move as the best one.
Let’s use an example to demonstrate.

250 Chapter 13

An Example of a Win in Three Steps

The script conn_think2.py is harder to beat than conn_think1.py, but not
impossible. A sophisticated player will notice that the computer misses some
moves that could have led to a win in three steps.

Here’s an example. At the left of Figure 13-4, it’s the computer’s (the red
player’s) turn to move. If the computer drops a disc in column 3, the com-
puter is guaranteed to win on its next turn, because the opponent (the yellow
player) can block only either column 1 or column 5. The computer can then
occupy the other column (either column 5 or column 1) in this third step
and win the game.

But instead, the computer chooses column 6, as shown at the right of
Figure 13-4, missing a chance to guarantee a win.

Figure 13-4: The computer (the red player) fails to make a move that guarantees a win.

We should, therefore, make further improvements on the game. You’ll
build a game that thinks three steps ahead.

Implement the Think-Three-Steps-Ahead Strategy

Let’s allow the computer to think up to three steps ahead.
Open conn_think2.py, add the newly defined validmoves() function and

the highlighted part in Listing 13-3 to the best_move() function, and save
the new script as conn_think.py in your chapter folder. Alternatively, you can
download it from the book’s resources. This is the complete script for our
think-ahead strategy.

--snip--
Define the validmoves() function to ensure three future moves
will not cause any column to have more than six discs in it
def validmoves(m1,m2,m3,occupied):
 validmove = False
 if m1 == m2 == m3 and len(occupied[m1-1]) <= 3:

Smart Games: Adding Intelligence 251

 validmove = True
 if m1 == m2 and m2 != m3 and len(occupied[m1-1]) <= 4:
 validmove = True
 if m1 == m3 and m2 != m3 and len(occupied[m1-1]) <= 4:
 validmove = True
 if m3 == m2 and m2 != m1 and len(occupied[m3-1]) <= 4:
 validmove = True
 return validmove
Define the best_move() function
def best_move():
 # Take column 4 in the first move
--snip--
Otherwise, look 3 moves ahead
 1 if len(winner) == 0 and len(loser) == 0:
 # Look at all possible combinations of 3 moves ahead
 for m1 in validinputs:
 for m2 in validinputs:
 for m3 in validinputs:
 if validmoves(m1,m2,m3,occupied) == True:
 tooccupy3 = deepcopy(occupied)
 tooccupy3[m1-1].append('red')
 tooccupy3[m2-1].append('yellow')
 tooccupy3[m3-1].append('red')
 if win_game(m3, 'red', tooccupy3) == True:
 winner.append(m1)
 # See if there is a move now that can lead to winning in 3 moves
 if len(winner)>0:
 2 cnt = {winner.count(x):x for x in winner}
 maxcnt = sorted(cnt.keys())[-1]
 return cnt[maxcnt]
--snip--

Listing 13-3: Allow the computer to think up to three steps ahead.

We first define validmoves(m1,m2,m3,occupied) to ensure that none of the
three future hypothetical moves m1, m2, and m3 on the game board (repre-
sented by the list of lists occupied) will cause any columns to have more than
six discs. If the three moves cause any of the seven columns to contain more
than six discs, the function returns False; otherwise, it returns True.

As in conn_think2.py, the computer first checks whether a winning move
could be made right away. If yes, it will take it. If not, it checks whether a
winning move could be made two steps ahead for the opponent. If yes, the
computer tries to prevent it.

If no winning moves are available for the opponent two steps ahead,
the computer looks three steps ahead 1. It checks all combinations of three
moves: the computer’s next move, m1; the opponent’s move two steps ahead,
m2; and the computer’s move at the third step, m3. If a combination leads to a
win for the player, the next move m1 is added to the list winner.

However, just because a move x is in winner doesn’t mean this move
will guarantee a computer win in three steps, because it can’t guarantee
that the opponent will choose m2 in the second step. Further, winner could

252 Chapter 13

contain multiple values. The function best_move() therefore looks for the
most frequent value in winner, since that’s the move most likely to lead to a
win for the computer in three steps.

As with most things in Python, there are many ways to find the most
frequent value in a list. We utilize a trick known as a list comprehension to
create an inline dictionary cnt. In this dictionary, the key is the number of
times a move appears in winner, and the value is the move 2. For example, if
winner has six elements [7, 6, 6, 5, 5, 5], the dictionary cnt would be {1:7,
2:6, 3:5}. We then sort the keys in cnt to find the highest frequency and call
it maxcnt. Here, maxcnt has a value of 3 because the highest number of times
a value appears is three. Finally, we use maxcnt to retrieve the dictionary ele-
ment with the highest frequency. Here, the move 5 appears most frequently
in winner.

If you run conn_think.py and play the game, you’ll find the computer
almost impossible to beat. If you do everything right, you can tie the game.
The moment you make a wrong move, the computer will seize the opportu-
nity and win the game.

T RY IT OU T

Run conn_think.py five times and try your best to win each game. See how
many games you can manage to win.

 The Machine-Learning Strategy
Another way to make Connect Four smart is to let the computer learn
from actual game outcomes. You’ll generate a million games in which both
players use random moves. You’ll record the intermediate steps and the
outcome of each game. The computer will use the game outcome data to
design the best strategy.

At each move, the computer looks at all games with the same game his-
tory as the current game board. It calculates the average outcome for each
possible next move and chooses the one that most likely leads to a favorable
outcome.

Create a Dataset of Simulated Games
The first step in the machine-learning strategy is to generate data to learn
from. We’ll simulate two players choosing random moves and record both
the outcome and the steps taken to reach that outcome. Even though the
moves by both players are random, we repeat the game many times. The
randomness in all these games is washed out by the law of large numbers.
As a result, the outcome data will be useful to the computer to predict the
outcome of a move.

Smart Games: Adding Intelligence 253

N O T E In statistics, the law of large numbers says that if you perform the same experiment
many times, the average outcome should be close to the expected value. See an example
at https://en.wikipedia.org/wiki/Law_of_large_numbers. In our setting, if the
average outcome from playing move A is better than the average outcome from playing
move B over a large number of trials, move A should be chosen over move B.

Download conn_simulation.py from the book’s resources. I explain the
script in Listing 13-4.

from random import choice
import pickle

Define a simulate() function to generate a complete game
 def simulate():
 occupied=[list(),list(),list(),list(),list(),list(),list()]
 validinputs=[1,2,3,4,5,6,7]
Define a horizontal4() function to check connecting 4 horizontally
def horizontal4(x, y, turn):
 win=False
 for dif in (-3, -2, -1, 0):
--snip--
 1 def win_game(col, row, turn):
 win=False
--snip--
 # Return the value stored in win
 return win
 # The red player takes the first move
 2 turn="red"
 # Keep track of all intermediate moves
 moves=[]
 # Use winlose to record game outcome, default value is 0 (a tie)
 winlose=[0]
 # Play a maximum of 42 steps
 3 for i in range(42):
 # The player randomly selects a move
 col=choice(validinputs)
 row=len(occupied[col-1])+1
 moves.append(col)
 # Check if the player has won
 if win_game(col, row, turn)==True:
 if turn=='red':
 winlose[0]=1
 if turn=='yellow':
 winlose[0]=-1
 break
 # Add the move to the occupied list to keep track
 occupied[col-1].append(turn)
 # Update the list of valid moves
 if len(occupied[col-1])==6 and col in validinputs:
 validinputs.remove(col)
 # Give the turn to the other player
 if turn=="red":
 turn="yellow"
 else:

https://en.wikipedia.org/wiki/Law_of_large_numbers

254 Chapter 13

 turn="red"
 # Record both game outcome and intermediate steps
 return winlose+moves
Simulate the game 1 million times and record all games
results=[]
4 for x in range(1000000):
 result=simulate()
 results.append(result)
Save the simulation data on your computer
5 with open('conn_simulates.pickle', 'wb') as fp:
 pickle.dump(results,fp)
Read the data and print out the first 10 games
with open('conn_simulates.pickle', 'rb') as fp:
 mylist=pickle.load(fp)

print(mylist[0:10])

Listing 13-4: Simulating a million Connect Four games

We first define simulate(). When called, it simulates a complete Connect
Four game and records each move and the game outcome. We omit the
graphics part of the game to save time.

We define win_game() to check if a player has won the game 1. In each
game, the red player moves first 2. We create the two lists moves and winlose
to record the intermediate moves and the game outcome, respectively.

We create a game loop to iterate a maximum of 42 times because each
Connect Four game has a maximum of 42 moves 3. In each iteration, a
player randomly selects a move. The move is added to moves to keep track
of the history of the game. At each step, we check whether a player wins. If
yes, we’ll record an outcome of 1 if the winner is the red player and -1 if the
winner is the yellow player. The default outcome is a tie, in which case we’ll
record a value of 0.

We then call simulate() a million times 4. The result of each game is
saved in a list result, with its first element being the outcome of the game
(-1, 1, or 0), followed by the intermediate steps of the game.

The outcomes and intermediate steps of the million games are saved in
conn_simulates.pickle for later use 5. We print out the results of the first 10
games, shown in Listing 13-5.

[[1, 1, 7, 1, 5, 7, 6, 5, 1, 5, 7, 5, 2, 5],
[1, 5, 4, 2, 7, 5, 2, 5, 6, 2, 7, 5],
[1, 7, 3, 5, 5, 3, 7, 3, 7, 4, 2, 7, 7, 6],
[-1, 6, 7, 6, 6, 5, 1, 5, 3, 5, 7, 6, 5, 4, 2, 5, 7, 3, 4,
7, 1, 1, 6, 4, 5, 6, 1, 1, 4, 1, 7, 3, 3, 7, 2, 3, 2, 3, 4],
[-1, 1, 3, 5, 1, 4, 5, 4, 6, 2, 7, 3, 2, 3, 4, 2, 3],
[1, 6, 5, 7, 1, 3, 3, 1, 5, 5, 5, 2, 3, 6, 7, 2, 6, 3, 2, 7,
5, 4, 3, 7, 6, 7, 6, 6, 1, 2, 2, 4, 5, 4, 7, 3, 2, 1, 1, 4],
[1, 2, 5, 3, 5, 3, 4, 7, 7, 5, 3, 4, 2, 2, 2, 5, 4, 4, 4, 4, 6, 6],
[1, 2, 5, 6, 4, 6, 7, 5, 5, 7, 4, 1, 3, 6, 3, 2, 1, 7, 1, 6],
[1, 7, 4, 4, 6, 3, 1, 2, 2, 3, 3, 4, 6, 3, 6, 1, 3, 4, 1, 3, 7, 7, 5, 4],
[-1, 1, 4, 1, 4, 1, 2, 4, 5, 6, 6, 6, 3]]

Listing 13-5: The first 10 simulated Connect Four games

Smart Games: Adding Intelligence 255

For example, the output for the first game is [1, 1, 7, 1, 5, 7, 6, 5, 1,
5, 7, 5, 2, 5]. The first element, 1, means that the red player has won the
game. The remaining elements, 1, 7, 1 ... , indicate the columns the play-
ers dropped their discs into, alternating between red and yellow. The red
player eventually wins this game by connecting four red discs vertically in
column 5.

T RY IT OU T

Run conn_simulation.py and print out the first 10 games in the generated data-
set. Interpret the numbers in each game and confirm that the intermediate steps
are consistent with the game’s outcome.

Apply the Data
The next step is to use the outcome data to design intelligent moves for
the computer. At each move, the computer will turn to the simulated data
to retrieve all games with the same history. It searches through all possible
next moves, finds the one that leads to the most favorable outcome, and
uses that as the next move.

Download conn_ml.py and save it in your chapter folder. The script is
based on conn_think.py. Listing 13-6 highlights the main differences.

--snip--
A history of moves made
moves_made=[]
Obtain game data
with open('conn_simulates.pickle', 'rb') as fp:
 gamedata=pickle.load(fp)
Define the best_move() function
1 def best_move():
 # Take column 4 in the first move
 if len(occupied[3])==0:
 return 4
 # If there is only one column has free slots, use the column
 if len(validinputs)==1:
 return validinputs[0]
 simu=[]
 for y in gamedata:
 if y[1:len(moves_made)+1]==moves_made:
 simu.append(y)
 # Now we look at the next move;
 outcomes={x:[] for x in validinputs}
 # We collect all the outcomes for each next move
 for y in simu:
 outcomes[y[len(moves_made)+1]].append(y[0])
 # Set the initial value of bestoutcome
 bestoutcome=-2;
 # Randomly select a move to be best_move

256 Chapter 13

 best_move=validinputs[0]
 # iterate through all possible next moves
 for move in validinputs:
 if len(outcomes[move])>0:
 outcome=sum(outcomes[move])/len(outcomes[move])
 # If the average outcome beats the current best
 if outcome>bestoutcome:
 # Update the bestoutcome
 bestoutcome=outcome
 # Update the best move
 best_move=move
 return best_move
Define a function computer_move()
2 def computer_move():
 # Declare global variables
 global turn, rounds, validinputs
 # Get the best move
 col=best_move()
 if col==None:
 col=choice(validinputs)
--snip--
 moves_made.append(col)
--snip--
Computer moves first
3 computer_move()
Define a function conn() to place a disc in a cell
4 def conn(x,y):
 # Declare global variables
 global turn, rounds, validinputs
--snip--
 moves_made.append(col)
--snip--
 # Computer moves next
 if len(validinputs)>0:
 computer_move()
--snip--

Listing 13-6: A Connect Four game player with the machine-learning strategy

We create the new list moves_made to keep track of all moves in the game
so far; we’ll use it later in best_move(). We open the simulated Connect Four
game data and save it in a list gamedata.

In best_move(), we make sure the first move is always to place a disc in
column 4, as that gives the computer a starting advantage 1. We check if
only one move is left and, if so, just take it as the next best move. Otherwise,
we check all simulated games with the same history as the current game
and see which next move will be most favorable to the red player. We assign
that move as the best move. I’ll explain how we do that in detail in ml_move.py,
using a concrete example.

At 2, we define computer_move(). When it’s the computer’s turn to play, it
calls best_move() to generate a move. The computer makes the move, and we
add that move to the list moves_made to track the game history.

Smart Games: Adding Intelligence 257

We set the computer to make the first move 3. After that, the player
clicks to make their move 4. The human player’s move is also added to
moves_made. The computer will move after you if the game isn’t over.

Run conn_ml.py and play the game a few times. You might be surprised
to find that it’s relatively easy to win. The machine-learning strategy is not
nearly as effective as our three-steps method. We’ll look into why later in
the chapter.

T RY IT OU T

Run conn_ml.py and play five games against the computer. See how many
games you can win.

 Test the Effectiveness of the Two Strategies
Next, we want to measure how intelligent the two strategies are. We’ll simu-
late 1,000 games and record the outcomes. In each game, the intelligent
computer version will play against a simple computer player that selects
random moves. We’ll see how many times the intelligent player wins or ties
the game.

The Think-Three-Steps-Ahead Strategy
We’ll start with the three-steps version. The script outcome_conn_think.py,
shown in Listing 13-7, has our two computer players play 1,000 times, then
prints out the number of winning, tying, and losing games.

import pickle
from random import choice
from copy import deepcopy

Define the simulate() function to play a complete game
1 def simulate():
 occupied=[list(),list(),list(),list(),list(),list(),list()]
 validinputs=[1,2,3,4,5,6,7]
--snip--
 def win_game(num, color, lst):
 win=False
--snip--
 def best_move():
 # Take column 4 in the first move
 if len(occupied[3])==0:
 return 4
--snip--
 # The red player takes the first move
 turn="red"
 # Keep track of all intermediate moves
 moves_made=[]

258 Chapter 13

 2 winlose=[0]
 # Play a maximum of 42 steps (21 rounds)
 for i in range(21):
 # The player selects the best move
 3 col=best_move()
 if col==None:
 col=choice(validinputs)
 moves_made.append(col)
--snip--
 # The other player randomly selects a move
 col=choice(validinputs)
 moves_made.append(col)
--snip--
 # Record both game outcome and intermediate steps
 4 return winlose+moves_made
Repeat the game 1000 times and record all game outcomes
results=[]
5 for x in range(1000):
 result=simulate()
 results.append(result)
with open('outcome_conn_think.pickle', 'wb') as fp:
 pickle.dump(results,fp)
with open('outcome_conn_think.pickle', 'rb') as fp:
 mylist=pickle.load(fp)
winlose=[x[0] for x in mylist]
Print out the number of winning games

 print("the number of winning games is", winlose.count(1))
Print out the number of tying games
print("the number of tying games is", winlose.count(0))
Print out the number of losing games
print("the number of losing games is", winlose.count(-1))

Listing 13-7: Test the effectiveness of the think-three-steps-ahead strategy.

At 1, we define simulate(), which pits the intelligent computer (the red
player) using the think-three-steps-ahead strategy against a computer player
that selects random moves.

The win_game() and best_move() functions are the same as those defined
in conn_think.py. We use the list winlose to record the game outcomes 2: 1 if
the red player wins, -1 if the yellow player wins, and 0 if it’s a tie.

Once the game starts, the red player calls best_move() to obtain a move 3,
while the yellow player randomly selects a move 4.

At 5, we call simulate() 1,000 times and record the outcome of all games.
We then print out the number of winning, tying, and losing games, summing
the count of 1, -1, and 0 to make it easier to read. Here’s an example of the
output:

the number of winning games is 995
the number of tying games is 0
the number of losing games is 5

Smart Games: Adding Intelligence 259

Out of all the games, the intelligent player with the think-three-steps-
ahead strategy has won 995 times, never tied, and lost 5 times.

T RY IT OU T

Rerun outcome_conn_think.py a few times to see how many times the “intel-
ligent” computer wins.

The Machine-Learning Strategy
Now we’ll test the machine-learning strategy in the same way. Download
outcome_conn_ml.py and save it in your chapter folder. This is similar to outcome
_conn_think.py, so I’ll just highlight the differences here:

--snip--
 # Obtain gamedata
 with open('conn_simulates.pickle', 'rb') as fp:
 gamedata=pickle.load(fp)
Define the best_move() function based on the machine-learning strategy
 def best_move():
 # Take column 4 in the first move
 if len(occupied[3])==0:
 return 4
--snip--
with open('outcome_conn_ml.pickle', 'wb') as fp:
 pickle.dump(results,fp)
with open('outcome_conn_ml.pickle', 'rb') as fp:
 mylist=pickle.load(fp)
--snip--

First, we obtain the simulated game outcome data that we’ve generated
from conn_simulation.py. Second, we base the definition of best_move() on
the machine-learning strategy instead of the three-steps strategy.

W A R N I N G The script outcome_conn_ml.py may take a long time (up to a couple of hours)
to run, depending on the speed of your computer. If you aren’t sure about your com-
puter’s speed, change the number of games from 1,000 to 100 and run the script first.

We call simulate() 1,000 times and record the outcomes, printing them
as before. Here’s an example output:

the number of winning games is 882
the number of tying games is 0
the number of losing games is 118

Out of all the games, the computer has won 882 times, never tied, and
lost 118 times—it did significantly worse than with the three-steps strategy.
Let’s look at why.

260 Chapter 13

Why Doesn’t the Machine-Learning Strategy Work Well in Connect Four?
The machine-learning strategy is less effective in our game mainly because
so many moves are available in a Connect Four game: a maximum of 42.
That means, exponentially, that a very large number of possible game
outcomes exist. We simulated a million games, which sounds like a lot,
but when the data is spread among many game outcomes, it’s inevitable
that some game outcomes will not be in the simulated data. As a result, it’s
impossible to find a best strategy for many of the game histories.

As an example, we’ll test the machine-learning strategy with one partic-
ular game history. Assume that the red and yellow players have both made
three moves and next it’s the red player’s turn. The game board at this stage
is as shown in Figure 13-5.

Figure 13-5: One game simulation

We’ll simulate this game setup in code to see how our machine-learning
strategy decides which move to make next. Enter ml_move.py, shown in
Listing 13-8.

import pickle
 validinputs=[1,2,3,4,5,6,7]
A game history

 moves_made=[4,5,4,5,4,5]
The game board
occupied=[list(),list(),list(),
 ['red','red','red'],
 ['yellow','yellow','yellow'],
 list(),list()]

Smart Games: Adding Intelligence 261

Obtain gamedata
with open('conn_simulates.pickle', 'rb') as fp:
 gamedata=pickle.load(fp)
1 simu=[]
for y in gamedata:
 if y[1:len(moves_made)+1]==moves_made:
 simu.append(y)
Now we look at the next move
outcomes={x:[] for x in validinputs}
We collect all the outcomes for each next move
for y in simu:
 outcomes[y[len(moves_made)+1]].append(y[0])
2 print(outcomes)
Set the initial value of bestoutcome
bestoutcome=-2;
Randomly select a move to be best_move
best_move=validinputs[0]
Iterate through all possible next moves
3 for move in validinputs:
 if len(outcomes[move])>0:
 outcome=sum(outcomes[move])/len(outcomes[move])
 print\
 (f'when the next move is {move}, the average outcome is {outcome}')
 # If the average outcome from that move beats the current best move
 if outcome>bestoutcome:
 # Update the best outcome
 bestoutcome=outcome
 # Update the best move
 best_move=move
4 print(f'the best next move is {best_move}')

Listing 13-8: Search for the best machine learning strategy move.

We import pickle, which enables us to work with datasets saved in the pickle
format. We open the simulation data file, conn_simulates.pickle, which was
created earlier in conn_simulation.py. The data is saved in the gamedata list.

At this point, the red player is able to place a disc in any of the seven
columns in the next move, so we have all seven values in validinputs. We
save the six moves already made in Figure 13-4, [4, 5, 4, 5, 4, 5], in the
list moves_made. The list of lists occupied keeps track of the disc positions
currently on the game board.

We check the million simulated games data to see if any of those games
match the game history of the current game. If yes, we put all the histori-
cal games that match in the list simu 1. We then focus on the seventh move
in all those games. We look at the outcomes (win, lose, or tie) of all games
associated with each of the seven possible moves, 1 through 7, and put them
in a dictionary outcomes.

We then print out the content of outcomes 2:

{1: [], 2: [-1, 1], 3: [1], 4: [1], 5: [-1], 6: [-1, -1, 1], 7: [-1]}

262 Chapter 13

W A R N I N G The outcome will be different when you run ml_move.py because the simulated data
is generated randomly.

As you can see, nine games have the same game history: none of which
placed the next disc in column 1, two that used column 2 for the next move,
one that used column 3, and so on. The values -1, 0, and 1 inside the square
brackets indicate that the red player loses, ties, and wins the game, respectively.

To help us compare which of the seven moves leads to the best outcome
for the red player, we calculate the average outcome for each move 3. If a
move leads to wins 100 percent of the time, the average outcome is 1; if a move
leads to 50 percent wins and 50 percent losses, the average outcome is 0; if a
move leads to a loss 100 percent of the time, the average is -1.

We print the average outcomes (we don’t have results for move 1
because no simulated game in simu used this move):

when the next move is 2, the average outcome is 0.0
when the next move is 3, the average outcome is 1.0
when the next move is 4, the average outcome is 1.0
when the next move is 5, the average outcome is -1.0
when the next move is 6, the average outcome is -0.3333333333333333
when the next move is 7, the average outcome is -1.0

Both moves 3 and 4 lead to an average outcome of 1. The script prints
out the first best move, which is 3 in this case 4:

the best next move is 3

However, when we look at this move in the game (Figure 13-6), we can
see it clearly isn’t the best move we could have made.

Figure 13-6: The machine-learning computer makes a mistake.

Smart Games: Adding Intelligence 263

As you can see, the problem with the machine-learning strategy is that
we don’t have enough simulated games that match our game history.

You may wonder whether we can just increase the number of simulated
games to solve the problem. The answer is yes and no. Increasing the number
of simulated games will make the strategy more intelligent, but it will also
increase the data size enough to slow the response of the machine-learning
script. Thus, the player will have to wait a long time for the computer to make
a move. This is the trade-off when using machine learning.

Let’s test this by increasing the size of the simulated games to 10 million.
Generating this data takes several hours. We rerun ml_move.py with the larger
dataset and get the following output:

{1: [-1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1],
2: [1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1],
3: [-1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1],
4: [1, 1, 1, 1, 1, 1, 1, 1, 1],
5: [1, 1, 1, 1, 1, 1, -1],
6: [-1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1],
7: [1, -1, 1, -1, -1, -1, 1, -1, -1, 1]}
when the next move is 1, the average outcome is -0.06666666666666667
when the next move is 2, the average outcome is 0.42857142857142855
when the next move is 3, the average outcome is -0.8181818181818182
when the next move is 4, the average outcome is 1.0
when the next move is 5, the average outcome is 0.7142857142857143
when the next move is 6, the average outcome is -0.07692307692307693
when the next move is 7, the average outcome is -0.2
the best next move is 4

Now that we have much more data to base our decision on, the machine-
learning strategy correctly recommends column 4, resulting in Figure 13-7.

Figure 13-7: With 10 million simulated games, the strategy makes
the correct move.

264 Chapter 13

T RY IT OU T

Change the number of the simulated games in conn_simulation.py to five mil-
lion. Play the game using conn_ml.py and compare the response time and the
competence of the machine-learning strategy. Finally, run outcome_conn_ml.py
using the new data and see how often the intelligent player wins. (Warning: the
process may be time-consuming.)

 Voice-Controlled Intelligent Connect Four Games
Let’s wrap up this chapter by adding speech recognition and text-to-speech
features to the intelligent Connect Four games.

A Voice-Controlled Game That Thinks Ahead
We’ll mesh together two scripts, conn_think.py and conn_hs.py, into conn_think
_hs.py. Download this file from the book’s resources and save it in your chap-
ter folder. The main differences are shown in Listing 13-9.

--snip--
1 def best_move():
 # Take column 4 in the first move
 if len(occupied[3])==0:
 return 4
--snip--
Define the computer_move() function
2 def computer_move():
 global turn, rounds, validinputs
 # Choose the best move
 col=best_move()
 if col==None:
 col=choice(validinputs)
 print_say(f"The computer chooses column {col}.")
--snip--
 # Check if the player has won
 if win_game(col, turn, occupied)==True:
 # If a player wins, invalid all moves, end the game
 validinputs=[]
 3 print_say(f"Congrats player {turn}, you won!")
 messagebox.showinfo("End Game",f"Congrats player {turn}, you won!")
 # If all cells are occupied and no winner, it's a tie
 if rounds==42:
 print_say("Game over, it's a tie!")
 messagebox.showinfo("Tie Game","Game over, it's a tie!")
--snip--
Computer moves first
4 computer_move()
Add a dictionary of words to replace

Smart Games: Adding Intelligence 265

to_replace = {'number ':'', 'cell ':'', 'column ':'',
 'one':'1', 'two':'2', 'three':'3',
 'four':'4', 'for':'4', 'five':'5',
 'six':'6', 'seven':'7'}
Start a while loop to take voice inputs
5 while len(validinputs)>0:
 # Ask for your move
 print_say(f"Player {turn}, what's your move?")
 # Capture your voice input
 inp= voice_to_text().lower()
 print_say(f"You said {inp}.")
 for x in list(to_replace.keys()):
 inp = inp.replace(x, to_replace[x])
 try:
 col=int(inp)
 except:
 print_say("Sorry, that's an invalid input!")
 continue
 # If col is not a valid move, try again
 6 if col not in validinputs:
 print_say("Sorry, that's an invalid move!")
 continue
 # If your voice input is a valid column number, play the move
 else:
 # Calculate the lowest available row number in that column
 row=len(occupied[col-1])+1
--snip--
 print_say(f"Congrats player {turn}, you won!")
--snip--
 print_say("Game over, it's a tie!")
--snip--
 if len(validinputs)>0:
 computer_move()
--snip--

Listing 13-9: A voice-controlled Connect Four game with the three-steps strategy

The function best_move() is the same as in the script conn_think.py 1.
We define computer_move() 2, which uses best_move() to choose a move and
speaks aloud the selected column. If the computer’s move wins or ties the
game, the script also announces it 3.

The computer then makes the first move of the game 4, and it starts a
while loop that keeps running as long as the list validinputs isn’t empty 5.
At each iteration, the script captures your voice input, which should be the
number of the column you want to drop a disc in. You can say “number
five,” “column five,” or “5.” It then converts the voice command to an integer
number to match the format in validinputs so it can compare your input to
the list. If you said something that isn’t convertible to an integer, the script
will say, “Sorry, that’s an invalid input.”

If you’ve given an invalid move 6, the script will say, “Sorry, that’s an
invalid move.” If your move is valid, the script places the disc on the game

266 Chapter 13

board. In the process, it will check whether you’ve won or tied the game
and, if so, will announce the result aloud. If the game is not yet over, the
computer makes a move.

Run the script and play the voice-controlled game with the computer.
You’ll notice that the game is more challenging and more interesting to play.

A Voice-Controlled Game Using Machine Learning
We’ll mesh together two scripts we created before, conn_ml.py and conn
_hs.py, into conn_ml_hs.py. Download the file from the book’s resources and
save it in your chapter folder. Listing 13-10 shows the main differences.

--snip--
import pickle
--snip--
A history of moves made
moves_made=[]
Obtain gamedata
with open('conn_simulates.pickle', 'rb') as fp:
 gamedata=pickle.load(fp)
Define the best_move() function based on machine learning
def best_move():
 # Take column 4 in the first move
 if len(occupied[3])==0:
 return 4
--snip--
Define the computer_move() function
def computer_move():
 global turn, rounds, validinputs
 # Choose the best move
 move=best_move()
 if move==None:
 move=choice(validinputs)
 print_say(f"The computer decides to occupy cell {move}.")
--snip--
 moves_made.append(move)
--snip--
Computer moves first
computer_move()
Start an infinite loop to take voice inputs
while len(validinputs)>0:
 # Ask for your move
 print_say(f"Player {turn}, what's your move?")
 # Capture your voice input
 inp= voice_to_text().lower()
--snip--
 moves_made.append(inp)
--snip--
 # Computer moves
 if len(validinputs)>0:
 computer_move()
--snip--

Listing 13-10: A voice-controlled Connect Four game using the machine-learning strategy

Smart Games: Adding Intelligence 267

This works in the same way as the voice-controlled three-steps version.
Run the script and play a game. You should find the game interesting but
easier to beat than the three-steps strategy.

 Summary
In this chapter, you created intelligent, voice-controlled graphical Connect
Four games by using two methods: the think-three-steps-ahead strategy
and the machine-learning strategy. This taught some important reason-
ing skills—how do we make a script intelligent?—as well as some basic
machine-learning skills.

You learned to generalize these two strategies and apply them to
specific games. You can apply these skills to create your own intelligent
voice-controlled games.

 End-of-Chapter Exercises

1. Modify conn_think1.py so that the human player moves first and the com-
puter moves second.

2. Mesh together ttt_click.py from Chapter 10 and conn_think1.py to create
a mouse-click version of the tic-tac-toe game in which the computer
thinks one step ahead.

3. Create a mouse-click version of the tic-tac-toe game in which the com-
puter thinks two steps ahead, based on ttt_click.py and conn_think2.py.

4. In best_move(), defined in conn_think.py, if the list winner has eight ele-
ments [7, 7, 4, 5, 6, 6, 6, 6], what’s the value of cnt, maxcnt, and
cnt[maxcnt], respectively?

5. Design a mouse-click version of the tic-tac-toe game in which the com-
puter thinks three steps ahead, based on ttt_click.py and conn_think.py.

6. Simulate a million tic-tac-toe games and save the game outcome and
intermediate steps as ttt_simulates.pickle. Then create a mouse-click
version of tic-tac-toe in which the computer uses the machine-learning
strategy, similar to what we’ve done in conn_simulation.py and conn_ml.py.

7. Modify outcome_conn_think.py and outcome_conn_ml.py to test the effec-
tiveness of the three-steps strategy and the machine-learning strategy
in the tic-tac-toe games you just created.

8. After running conn_simulation.py, we printed out 10 observations from
the dataset conn_simulates.pickle, as shown in Listing 13-5. The 10th
observation is [-1, 1, 4, 1, 4, 1, 2, 4, 5, 6, 6, 6, 3]. Who has won
the 10th game? Are the four discs connected vertically, horizontally, or
diagonally?

PART IV
G O I N G F U R T H E R

14
F I N A N C I A L A P P L I C A T I O N S

The speech recognition and text-to-speech
techniques can be applied to many aspects

of life. In this chapter, we’ll focus on track-
ing the financial markets, but the techniques

you learn here can be easily generalized and applied
to your own area of interest, whatever that may be.

You’ll build three projects in this chapter: an app that reports the
up-to-date stock price of any publicly traded company; a script that
builds visualizations of stock prices; and an app that uses recent daily
stock prices to calculate returns, run regressions, and perform detailed
analyses.

As always, all scripts are available through the book’s resources page
at https://www.nostarch.com/make-python-talk/. Start by creating the folder
/mpt/ch14/ for this chapter.

https://www.nostarch.com/make-python-talk/

272 Chapter 14

NE W SKIL L S

• Retrieving real-time and daily stock price information

• Learning about JSON data, including how to reformat it into a readable
form and import it to Python

• Automating the process of obtaining a stock ticker symbol based on the
company name

• Visualizing financial data with plots and charts

• Performing regression analyses and interpreting results

 Python, What’s the Facebook Stock Price?
In this project, you’ll use the yahoo_fin package to obtain real-time price
information based on the ticker symbol of a stock. A ticker symbol is a
sequence of characters, or code, used to uniquely identify a stock. Most
people will not know a company’s associated ticker symbol.

This provides the opportunity to work backward. You’ll learn to scrape
the web to get a stock’s ticker symbol from the company name. When you
enter the name of a firm into the script, Python will tell you the ticker symbol
of the firm’s stock. Finally, you’ll add the text-to-speech and speech recogni-
tion features.

Obtain the Latest Stock Price
The yahoo_fin package lets you obtain the latest stock price information
from Yahoo! Finance. This package isn’t in the Python standard library, so
you need to pip install it first.

Open your Anaconda prompt (in Windows) or a terminal (in Mac or
Linux), activate the virtual environment chatting, and run the following
command (note the underscore in the middle of the package name):

pip install yahoo_fin

Next, open your Spyder editor and save Listing 14-1 as live_price.py in
your chapter folder. To use this script, you need to find the ticker symbol
for the stock you’re interested in beforehand.

from yahoo_fin import stock_info as si

Start an infinite loop
1 while True:
 # Obtain ticker symbol from you

Financial Applications 273

 ticker = input("Which stock (ticker symbol) are you looking for?\n")
 # If you want to stop, type in "done"
 2 if ticker == "done":
 break
 # Otherwise, type in a stock ticker symbol
 else:
 # Obtain stock price from Yahoo!
 3 price = si.get_live_price(ticker)
 # Print out the stock price
 print(f"The stock price for {ticker} is {price}.")

Listing 14-1: Retrieving real-time stock prices

We import the stock_info module from the yahoo_fin package under the
alias si. We then put the script in an infinite loop 1 to continuously take
your written input requesting stock ticker symbols. Whenever you want to
stop the script, you can enter done 2. Otherwise, the script automatically
continues to obtain the latest stock price information for your requested
company from Yahoo! Finance 3. Finally, the script prints out the stock
price information.

Here’s the output from an exchange with the script, with user input in
bold:

Which stock (ticker symbol) are you looking for?
MSFT
The stock price for MSFT is 183.25.

Which stock (ticker symbol) are you looking for?
AAPL
The stock price for AAPL is 317.94000244140625.

Which stock (ticker symbol) are you looking for?
done

As you can see, I entered ticker symbols for Microsoft and Apple (MSFT
and AAPL, respectively), and the script returned their latest prices.

Notice that the price of the Apple stock has many digits after the decimal.
We’ll adjust the code a little later to show only two digits after the decimal for
all stock prices.

T RY IT OU T

Run live_price.py and find the stock prices for Amazon (AMZN) and Tesla (TSLA).
Then go to the website https://finance.yahoo.com/ to check if the prices are close
to your output.

https://finance.yahoo.com/

274 Chapter 14

For the script to work, you need the company’s stock ticker symbol, such
as MSFT or AAPL. You may wonder, what if I don’t know the ticker symbols
of the stocks that I’m interested in? Can Python find it if I know only the
company name, such as Microsoft or Apple? The answer is yes, and this is
when the web-scraping skills you learned in Chapter 6 become handy.

Find Ticker Symbols
Many times, you’ll know the name of the company you’re interested in but
not its ticker symbol. This script will find the ticker symbol when you enter
the name of the company. This is important because our end goal is to create
voice-controlled applications in the financial market. It’s relatively difficult
for the Python script to pick up the ticker symbol via voice commands, but
picking up the company name is much easier.

We need to first find a website that can reliably provide a company’s
ticker symbol. We’ll use Yahoo! Finance and query the site using the URL
https://query1.finance.yahoo.com/v1/finance/search?q= followed by the name of
the company you want to query. For example, if you put Bank of America
at the end, you’ll get a set of Python-friendly data results, as shown in
Figure 14-1.

Figure 14-1: Results when you search for the ticker symbol for Bank of America

This data is formatted in JSON, short for JavaScript Object Notation. This
file format is used for browser-server communication that uses human-
readable text to store and transmit data objects. JSON was derived from
JavaScript, but it’s now a language-independent data format that’s used by
many programming languages, include Python.

To make the JSON data easier to read, we’ll use the online JSON data
formatter at https://jsonformatter.curiousconcept.com/. Open the URL and you’ll
see a screen similar to Figure 14-2.

https://jsonformatter.curiousconcept.com/
https://query1.finance.yahoo.com/v1/finance/search?q=

Financial Applications 275

Figure 14-2: A website to format JSON data

Paste the data from Figure 14-1 into the designated space and click
Process. The formatter will convert the data into a much more readable
format, shown in Listing 14-2.

{
 "explains":[

],
 "count":18,
 "quotes":[
 {
 "exchange":"NYQ",
 "shortname":"Bank of America Corporation",
 "quoteType":"EQUITY",
 1 "symbol":"BAC",
 "index":"quotes",
 "score":208707.0,
 "typeDisp":"Equity",
 "longname":"Bank of America Corporation",
 "isYahooFinance":true
 },
 {
 "exchange":"NYQ",
 "shortname":"Bank of America Corporation Non",
 "quoteType":"EQUITY",
 "symbol":"BAC-PL",
 "index":"quotes",
 "score":20322.0,
 "typeDisp":"Equity",
 "longname":"Bank of America Corporation",
 "isYahooFinance":true
 },
 {
 "exchange":"NYQ",
 "shortname":"Bank of America Corporation Dep",

276 Chapter 14

 "quoteType":"EQUITY",
 "symbol":"BAC-PC",
 "index":"quotes",
 "score":20183.0,
 "typeDisp":"Equity",
 "longname":"Bank of America Corporation",
 "isYahooFinance":true
 },

--snip--
}

Listing 14-2: The formatted JSON data for the ticker symbol search

The dataset is a large dictionary of several elements with the key values
explains, count, quotes, and so on. The value for the quotes key is a list of sev-
eral dictionaries. The first dictionary contains the keys exchange, shortname,
quoteType—and importantly, symbol, which contains the value BAC, the ticker
symbol we need 1.

Next, we use a Python script to extract the ticker symbol based on the
preceding pattern. The script get_ticker_symbol.py, shown in Listing 14-3,
accomplishes that.

import requests

Start an infinite loop
1 while True:
 # Obtain company name from you
 firm = input("Which company's ticker symbol are you looking for?\n")
 # If you want to stop, type in "done"
 if firm == "done":
 break
 # Otherwise, type in a company name
 2 else:
 3 try:
 # Extract the source code from the website
 url = 'https://query1.finance.yahoo.com/v1/finance/search?q='+firm
 response = requests.get(url)
 # Read the JSON data
 response_json = response.json()
 # Obtain the value corresponding to "quotes"
 4 quotes = response_json['quotes']
 # Get the ticker symbol
 ticker = quotes[0]['symbol']
 # Print out the ticker
 print(f"The ticker symbol for {firm} is {ticker}.")
 except:
 print("Sorry, not a valid entry!")
 continue

Listing 14-3: Finding a stock’s ticker symbol based on the company name

Financial Applications 277

We import the requests module, which allows Python to send HyperText
Transfer Protocol (HTTP) requests. At 1, we start an infinite loop that
asks for your written input in each iteration. To exit the loop, enter done.
Otherwise, you enter in the company name 2. We use exception handling
to prevent a crash 3.

We go into the JSON data and extract the list corresponding to the key
quotes 4. We then go to the first element and look for the value correspond-
ing to the key symbol. The script prints out the ticker symbol at the IPython
console. If there are no results, the script will print Sorry, not a valid entry!.

Run the script a few times and search for several companies to check
that it works. The following output is one interaction with the script:

Which company's ticker symbol are you looking for?
ford motor
The ticker symbol for ford motor is F.

Which company's ticker symbol are you looking for?
walt disney company
The ticker symbol for walt disney company is DIS.

Which company's ticker symbol are you looking for?
apple
The ticker symbol for apple is AAPL.

Which company's ticker symbol are you looking for?
done

As you can see, the script works for companies with one-word names,
like Apple, as well as longer names, such as Walt Disney Company.

T RY IT OU T

Use get_ticker_symbol.py to find the ticker symbols for General Motors and
Procter & Gamble.

Retrieve Stock Prices via Voice
Now we’ll mesh together the scripts live_price.py and get_ticker_symbol.py and
add in the speech recognition and text-to-speech features. Enter Listing 14-4
in a Spyder editor and save it as live_price_hs.py in your chapter folder, or
download the script from the book’s resources.

import requests
from yahoo_fin import stock_info as si

from mptpkg import voice_to_text, print_say

278 Chapter 14

Start an infinite loop
1 while True:
 # Obtain company name from you
 print_say("Which company's stock price do you want to know?")
 firm = voice_to_text()
 print_say(f"You just said {firm}.")
 # If you want to stop, type in "stop listening"
 if firm == "stop listening":
 print_say("OK, goodbye then!")
 break
 # Otherwise, say a company name
 2 else:
 try:
 # Extract the source code from the website
 url = 'https://query1.finance.yahoo.com/v1/finance/search?q='+firm
 response = requests.get(url)
 # Read the JSON data
 response_json = response.json()
 # Obtain the value corresponding to "quotes"
 quotes = response_json['quotes']
 # Get the ticker symbol
 ticker = quotes[0]['symbol']

 # Obtain live stock price from Yahoo!
 3 price = round(float(si.get_live_price(ticker)),2)
 # Speak the stock price
 print_say(f"The stock price for {firm} is {price}.")
 # In case the price cannot be found, the script will tell you
 except:
 print_say("Sorry, I cannot find what you are looking for!")
 continue

Listing 14-4: Use voice to retrieve real-time stock price

We now import print_say() and voice_to_text() from the local mptpkg
package to add the text-to-speech and speech recognition features.

At 1, we start an infinite loop that asks for your voice input. To exit
the loop, you say, “Stop listening.” Otherwise, you say a company name 2,
and the script searches for the ticker symbol. We use try and except here to
prevent the script from crashing because of a lack of results from Yahoo!
Finance.

We save the stock price from Yahoo! Finance in price 3. Note that we
use round() to round the stock price to two digits after the decimal. The
script will speak the company’s stock price or, if there are no results, will
say, “Sorry, I cannot find what you are looking for!”

N O T E While the result from the ticker symbol search in this script is relatively accurate, mis-
takes do happen. Be sure to say the company name in a clear enough way that the script
returns the correct ticker symbol. For example, use “Ford Motor” instead of “Ford.”

Financial Applications 279

Here’s a sample interaction:

Which company's stock price do you want to know?
You just said JPMorgan Chase.
The stock price for JPMorgan Chase is 97.31.

Which company's stock price do you want to know?
You just said Goldman Sachs.
The stock price for Goldman Sachs is 196.49.

Which company's stock price do you want to know?
You just said stop listening.
OK, goodbye then!

T RY IT OU T

Use live_price_hs.py to find out the latest stock price for Johnson & Johnson and
McDonald’s.

 Voice-Controlled Data Visualization
One efficient way to analyze data—for example, to find patterns in stock
movements—is through data visualization. Data visualization puts data into
visual contexts such as plots and charts to make it easy for human brains to
understand.

The price you obtained in the first project of this chapter is the latest
price for the stock. That is, you have one data point for each stock you query.
However, in order to learn more about a stock, it’s better to obtain a number
of recent prices for the stock so that you can get a sense of velocity and direc-
tion. Is the stock staying at about the same value, rising, or falling? If the
price is changing, how rapid is this change?

In this project, you’ll obtain recent daily stock price information from
Yahoo! Finance. You’ll then plot a graph to see the price movements over
time. You’ll also learn to create candlestick charts so that you can see intra-
day stock movement patterns. With that set up, we’ll add the speech recog-
nition and text-to-speech features.

Create Stock Price Plots
We’ll use the pandas_datareader module with matplotlib to create plots for
stock prices over the last six months. First you’ll learn how to extract data,
and then you’ll learn how to create plots.

280 Chapter 14

Before we begin, you need to install a few third-party modules. Go to
your Anaconda prompt (in Windows) or a terminal (in Mac or Linux) and
activate the virtual chatting environment. Then run the following lines of
code one by one:

conda install pandas
conda install matplotlib
pip install pandas_datareader

Follow the instructions to finish the installations. The pandas_datareader
module extracts online data from various sources into a pandas DataFrame.
Then enter Listing 14-5 in your Spyder editor and save the script as price_plot.py
in your chapter folder.

import matplotlib.pyplot as plt
from pandas_datareader import data as pdr
import matplotlib.dates as mdates

Set the start and end dates
1 start_date = "2020-09-01"
end_date = "2021-02-28"

Choose stock ticker symbol
2 ticker = "TSLA"
Get stock price
3 stock = pdr.get_data_yahoo(ticker, start=start_date, end=end_date)
print(stock)
Obtain dates
4 stock['Date']=stock.index.map(mdates.date2num)
Choose figure size
5 fig = plt.figure(dpi=128, figsize=(10, 6))
Format date to place on the x-axis
6 formatter = mdates.DateFormatter('%m/%d/%Y')
plt.gca().xaxis.set_major_formatter(formatter)
Plot data
7 plt.plot(stock['Date'], stock['Adj Close'], c='blue')
Format plot
8 plt.title("The Stock Price of Tesla", fontsize=16)
plt.xlabel('Date', fontsize=10)
fig.autofmt_xdate()
plt.ylabel("Price", fontsize=10)
9 plt.show()

Listing 14-5: The script to create a stock price plot

We import the modules, then specify the start and end dates of the
data we want to extract 1. These will be hardcoded for now; we’ll make
the dates dynamic later. The dates should be in the format YYYY-MM-DD.
In this case, we’ll use the six-month period from September 1, 2020, to
February 28, 2021. We also provide the ticker symbol of the stock—in this
case, Tesla with the ticker symbol TSLA 2.

Financial Applications 281

We use get_data_yahoo() in the pandas_datareader module to extract daily
stock price information and save the data as a pandas DataFrame named
stock 3. The dataset looks like this:

 High Low ... Volume Adj Close
Date ...
2020-09-01 502.489990 470.510010 ... 90119400 475.049988
2020-09-02 479.040009 405.119995 ... 96176100 447.369995
2020-09-03 431.799988 402.000000 ... 87596100 407.000000
2020-09-04 428.000000 372.019989 ... 110321900 418.320007
2020-09-08 368.739990 329.880005 ... 115465700 330.209991

2021-02-22 768.500000 710.200012 ... 37269700 714.500000
2021-02-23 713.609985 619.000000 ... 66606900 698.840027
2021-02-24 745.000000 694.169983 ... 36767000 742.020020
2021-02-25 737.210022 670.580017 ... 39023900 682.219971
2021-02-26 706.700012 659.510010 ... 41011300 675.500000

[123 rows x 6 columns]

The dataset uses dates as indexes. The 123 rows represent the 123 trading
days during the six-month period. The six columns represent the following
information in each trading day: high price, low price, open price, closing
price, trading volume, and adjusted closing price.

We then read the timestamp index of the dataset as a number and save
it as an additional (seventh) column 4. This step is necessary because the
dataset doesn’t recognize the index as a separate variable, but we need the
date information to use as our x-axis in the charts. We then use the figure()
function in matplotlib.pyplot to specify the size and resolution of the plot and
name the generated figure fig 5. The dpi=128 argument makes the output
128 pixels per inch. The figsize=(10,6) argument sets the plot 10 inches
wide and 6 inches tall.

N O T E DPI stands for (printer) dots per inch from predigital days. Nowadays, it actually
stands for pixels per inch, so DPI is a bit of a misnomer.

We use the DateFormatter() method from matplotlib.dates to specify the
format of the dates we want to show 6. We do the actual plotting by using
plot() 7. The first two arguments are the variables to use on the x- and y-axis,
respectively. We also use a third argument to specify the color. In this case, we
plot the adjusted closing price against the date and use blue as the color.

N O T E The adjusted closing price is the closing price adjusted for stock splits and cash
dividends. In many cases, it’s identical to the unadjusted closing price. When it
differs, it is a more accurate measure of total returns to investors since it takes into
account both dividend yields and capital gains.

Starting at 8, we put a title on the graph and label the x- and y-axis. We
also use autofxt_xdate() to show the dates on the x-axis diagonally to prevent
overlapping text.

282 Chapter 14

Finally, show() is called to display the plot 9. Figure 14-3 shows the
output.

Figure 14-3: Stock price plot for Tesla from September 2020 through February 2021

We can see the price movement patterns of Tesla over the six-month
period. The stock was at less than $500 per share in early September 2020
but shot up to over $800 per share in late December, before dropping
slightly in mid-February. This visualization is much more reader-friendly
(and informative) than the stock DataFrame output earlier!

N O T E In case you can’t locate the generated plot, the plots and charts appear in the Plots
pane in the Spyder IDE. You may need to click the Plots tab to see them.

T RY IT OU T

Run price_plot.py and generate a stock price plot for Facebook (ticker symbol
FB) from September 1, 2020 to February 28, 2021.

Create Candlestick Charts
Price plots are great for summarizing patterns using one observation per
day. Sometimes you’re interested in several intraday price movements, such
as the range of the price fluctuation in a given day, whether the closing
price is higher or lower than the opening price, and so on. With candlestick
charts, you can visualize four pieces of information each day for a stock:
daily high, daily low, opening price, and closing price.

Financial Applications 283

The following script generates the candlestick chart for Amazon stock
in the month of February 2021. I don’t recommend plotting stock prices
from more than one month because the chart may become too crowded,
making it hard to detect patterns.

First, you need to install the third-party mplfinance module. Open your
Anaconda prompt (in Windows) or a terminal (in Mac or Linux), activate
the virtual environment chatting, and run the following command:

pip install mplfinance

Then open your Spyder editor and save Listing 14-6 as candle_stick.py in
your chapter folder.

import matplotlib.pyplot as plt
from pandas_datareader import data as pdr
import matplotlib.dates as mdates
from mplfinance.original_flavor import candlestick_ohlc

Set the start and end date
start_date = "2021-02-01"
end_date = "2021-02-28"
Choose stock ticker symbol
ticker = "AMZN"
Get stock price
stock = pdr.get_data_yahoo(ticker, start=start_date, end=end_date)
Obtain dates
stock['Date'] = stock.index.map(mdates.date2num)
Choose the four daily prices: open, high, low, and close
1 df_ohlc = stock[['Date','Open', 'High', 'Low', 'Close']]
Choose figure size
figure, fig = plt.subplots(dpi=128, figsize = (8,4))
Format dates
formatter = mdates.DateFormatter('%m/%d/%Y')
Choose x-axis
fig.xaxis.set_major_formatter(formatter)
fig.xaxis_date()
2 plt.setp(fig.get_xticklabels(), rotation = 10)
Create the candlestick chart
3 candlestick_ohlc(fig,
 df_ohlc.values,
 width=0.8,
 colorup='black',
 colordown='gray')
Put text in the chart that black color means close > open
4 plt.figtext(0.3,0.2,'Black: Close > Open')
Put text in the chart that gray color means close < open
plt.figtext(0.3,0.15,'Gray: Close < Open')
Put chart title and axis labels
5 plt.title(f'Candlesticks Chart for {ticker}')
plt.ylabel('Price')
plt.xlabel('Date')
plt.show()

Listing 14-6: The script to create a candlestick chart

284 Chapter 14

We import all needed modules and functions, including the candlestick
_ohlc() function from the mplfinance module that we’ll use to create the can-
dlestick chart.

At 1, we select the four daily prices that we want to extract and visual-
ize in the chart: opening price, daily high, daily low, and closing price.

The setp() function from matplotlib sets object properties, and we invoke
it to rotate the dates on the x-axis 2. We pass two arguments (the first to
obtain the x-axis label and the second to set the property) to rotate the x-axis
label 10 degrees, so text doesn’t overlap. At 3, we use candlestick_ohlc() to
generate the candlestick chart. The first argument specifies where to place
the chart, and the second specifies the data to use. The third argument is the
width of the candle body relative to the distance between two observations
(the distance on the x-axis between two trading days).

The candlestick chart uses colors to convey additional data. We use
black to indicate that the closing price is higher than the opening price;
otherwise, the value is gray. The information is also conveyed in the leg-
end 4. Finally, we give the chart a title and label the two axes 5.

The candlestick chart for Amazon stock prices in February 2021 is
shown in Figure 14-4. The blank spaces in the chart are non-trading days
(weekends and holidays).

The daily high and daily low are at the ends of the thin lines (which look
like candle wicks), while the opening and closing prices are at the ends of the
wide lines (which look like candle bodies). Hence the name!

From this, we can quickly see that, on February 1, the price jumped up:
the body of the candle spans nearly $100 and is colored black. Compare
this to the following day, where, although the thin line is relatively long, the
candle body is short, showing that despite fluctuations, it closed at nearly
the same price that it opened at.

Figure 14-4: A candlestick chart for Amazon daily stock prices in February 2021

Financial Applications 285

T RY IT OU T

Run candle_stick.py to generate a candlestick chart for Wells Fargo (ticker sym-
bol WFC) from February 1, 2021 to February 28, 2021.

Add Voice Control
Let’s add the speech functionality. When you say the company name, the
script will search for the ticker symbol of the firm’s stock, retrieve daily price
information, and display the plot or chart. We first need to create two local
modules: one to display stock price plots and one to show candlestick charts.

The Price Plot Module

We’ll create a stock price plot module based on price_plot.py. Enter Listing 14-7
in your Spyder editor and save it as myplot.py.

--snip--
from datetime import date, timedelta

from mptpkg import print_say

1 def price_plot(firm):
 try:
 # Extract the source code from the website
 2 url = 'https://query1.finance.yahoo.com/v1/finance/search?q='+firm
 response = requests.get(url)
 # Read the JSON data
 response_json = response.json()
 # Obtain the value corresponding to "quotes"
 quotes = response_json['quotes']
 # Get the ticker symbol
 ticker = quotes[0]['symbol']
 # Set the start and end date
 3 end_date = date.today().strftime("%Y-%m-%d")
 start_date = (date.today() - timedelta(days=180)).strftime("%Y-%m-%d")
 # Get stock price
 stock = pdr.get_data_yahoo(ticker, start=start_date, end=end_date)
 # Obtain dates
 stock['Date']=stock.index.map(mdates.date2num)
 # Choose figure size
 4 fig = plt.figure(dpi=128, figsize=(10, 6))
 # Format date to place on the x-axis
 formatter = mdates.DateFormatter('%m/%d/%Y')
 plt.gca().xaxis.set_major_formatter(formatter)
 # Plot data
 plt.plot(stock['Date'], stock['Adj Close'], c='blue')
 # Format plot
 plt.title\
 (f"The Stock Price of {firm} in the Last Six Months", fontsize=16)

286 Chapter 14

 plt.xlabel('Date', fontsize=10)
 fig.autofmt_xdate()
 plt.ylabel("Price", fontsize=10)
 plt.show()
 # Let you know that the plot is ready via voice and print
 5 print_say(f"OK, here is the stock price plot for {firm}.")
 except:
 print_say("Sorry, not a valid entry!")

Listing 14-7: The script for the stock plot module

We import the modules, including those we used to plot stock prices
and to parse the HTML source file to find the firm’s ticker symbol. We also
import the print_say() function from the local mptpkg package.

At 1, we start stock_plot(), which takes the company name as the argu-
ment. We again use try and except to prevent crashes. We first find the ticker
symbol of the firm 2.

Here we make the price information dynamic 3. The end date is today’s
date, while the start date is six months ago. The script will generate a plot 4
and then tell you the plot is ready 5. If the ticker symbol or the price infor-
mation can’t be found, the script will print and say, “Sorry, not a valid entry!”

The Candlestick Chart Module

Next we’ll create the candlestick chart module. Open mychart.py from the
book’s resources, as shown in Listing 14-8.

from mplfinance.original_flavor import candlestick_ohlc
from mptpkg import print_say
from datetime import date, timedelta
--snip--
1 def candle_stick(firm):

--snip--
 # Set the start and end date
 start_date = (date.today() - timedelta(days=14)).strftime("%Y-%m-%d")
 end_date = date.today().strftime("%Y-%m-%d")
--snip--
 # Choose the four daily prices: open, high, low, and close
 2 df_ohlc = stock[['Date','Open', 'High', 'Low', 'Close']]
 # Choose figure size
 figure, fig = plt.subplots(dpi=128, figsize = (8,4))
--snip--
 plt.show()
 3 print_say(f"Here is the candlestick chart for {firm}.")
--snip--
 except:
 print_say("Sorry, not a valid entry!")

Listing 14-8: The script to create the candlestick chart module

We import the modules, including the candlestick_ohlc() function from
the mplfinance module.

Financial Applications 287

We define candle_stick() at 1. Here we make the price information
dynamic. The end date is today’s date, while the start date is two weeks ago.
We then perform the same actions as in myplot.py to search for the ticker
symbol. With the ticker symbol, we retrieve the daily stock price informa-
tion in the past 14 days from Yahoo! Finance. I’ve snipped this part of the
script to save space.

The data used for the candlestick chart will be the date plus the open-
ing price, daily high and low prices, and closing price 2. The script builds
the candlestick chart and lets you know when it’s done 3.

The Main Script

Next, we’ll import the two modules to the main script so that we can voice-
activate a stock price plot or a candlestick chart. Enter Listing 14-9 in your
Spyder editor and save it as plot_chart_hs.py in your chapter folder.

from myplot import price_plot
from mychart import candle_stick
from mptpkg import voice_to_text, print_say

Start an infinite loop
1 while True:
 # Obtain voice input from you
 print_say("How may I help you?")
 inp = voice_to_text()
 print_say(f"You said {inp}.")
 # If you want to stop, say "stop listening"
 2 if "stop listening" in inp:
 print_say("Nice talking to you, goodbye!")
 break
 # If "price pattern for" in voice, activate plot functionality
 3 elif "price pattern for" in inp:
 pos = inp.find('price pattern for ')
 firm = inp[pos+len('price pattern for '):]
 price_plot(firm)
 continue
 # If "candlestick chart for" in voice, activate chart functionality
 4 elif "chart for" in inp:
 pos = inp.find('chart for ')
 firm = inp[pos+len('chart for '):]
 candle_stick(firm)
 continue
 # Otherwise, go to the next iteration
 else:
 continue

Listing 14-9: The script to voice-control plot and chart creation

We import the modules and add the print_say() and voice_to_text()
functions. We also import price_plot() from the local myplot module and
candle_stick() from the local mychart module that we just created.

288 Chapter 14

At 1, we start an infinite loop that asks for your voice input. To exit
the script, you say, “Stop listening” 2. To see the stock plot of a firm (say,
Goldman Sachs), you say, “Stock pattern for Goldman Sachs.” The “stock
pattern for” will trigger the stock plot functionality 3. We use “stock pat-
tern” instead of “stock plot” because it’s easier for the microphone to pick
up. The script then extracts the company name, which is Goldman Sachs in
this case, and uses it as the argument in the price_plot() function.

To see the candlestick chart of a firm (say, General Motors), you say,
“Chart for General Motors.” The “chart for” part of the voice command will
trigger the candlestick chart functionality 4. The script then extracts the
company name and uses it as the argument in the candle_stick() function.

N O T E Depending on your operating system, you may want to change the trigger words in the
script. For example, if the microphone can’t pick up “Stop listening,” you can change
it to stop or stop running.

Here’s my sample output:

How may I help you?
You said price pattern for Oracle.
OK, here is the stock price plot for Oracle.

How may I help you?
You said chart for Intel.
Here is the candlestick chart for Intel.

How may I help you?
You said stop listening.
Nice talking to you, goodbye!

The “price pattern for Oracle” phrase triggered the price plot func-
tionality, and the script generated the price plot for Oracle, shown in
Figure 14-5.

Figure 14-5: Voice-controlled stock price plot for Oracle

Financial Applications 289

The “chart for Intel” phrase prompted the script to create a candlestick
chart for Intel, shown in Figure 14-6.

Figure 14-6: Voice-controlled candlestick chart for Intel

 Voice-Controlled Stock Report
While the price plots and candlestick charts allow us to see recent price
movements, they don’t give us information on how a stock has performed
relative to the general market. Many times, investors are interested in how
well a stock has performed in comparison to a benchmark index. They’re
also interested in the risk of a stock, measured in how volatile a stock’s price
has been relative to the market as a whole.

To that end, we’ll progress to a more detailed analysis of a stock’s price.
You’ll obtain recent daily stock price information and perform regression
analyses to figure out the recent performance and market risk of the stock.
You’ll calculate the stock’s abnormal return (alpha, which is the relative
performance of the stock compared to the market as a whole) and the
market risk (beta, which measures how volatile the stock’s return has been
compared to the market as a whole) by running a regression of the stock’s
return on the market return.

N O T E For detailed explanations of alpha and beta of stock, see, for example, the relevant
articles on Wikipedia: https://en.wikipedia.org/wiki/Alpha_(finance) and
https://en.wikipedia.org/wiki/Beta_(finance).

Analyze Recent Stock Performance and Risk
You’ll use the same methods we’ve used so far to extract recent daily stock
price information from Yahoo! Finance using the pandas_datareader mod-
ule. You’ll then use a new module statsmodels to perform statistical analyses.

https://en.wikipedia.org/wiki/Alpha_(finance)
https://en.wikipedia.org/wiki/Beta_(finance)

290 Chapter 14

First, we’ll install the third-party module and extract data. Go to your
Anaconda prompt (in Windows) or a terminal (in Mac or Linux) and acti-
vate the virtual chatting environment. Then run the following command:

conda install statsmodels

Enter Listing 14-10 in your Spyder editor and save the script as alpha
_beta.py in your chapter folder.

from datetime import date, timedelta

import statsmodels.api as sm
from pandas_datareader import data as pdr

Set the start and end dates
end_date = date.today().strftime("%Y-%m-%d")
start_date = (date.today() - timedelta(days=180)).strftime("%Y-%m-%d")
market = "^GSPC"
ticker = "MSFT"
Retrieve prices
sp = pdr.get_data_yahoo(market, start=start_date, end=end_date)
stock = pdr.get_data_yahoo(ticker, start=start_date, end=end_date)
Calculate returns for sp500 and the stock
sp['ret_sp'] = (sp['Adj Close']/sp['Adj Close'].shift(1))-1
stock['ret_stock'] = (stock['Adj Close']/stock['Adj Close'].shift(1))-1
Merge the two datasets, keep only returns
df = sp[['ret_sp']].merge(stock[['ret_stock']],\
 left_index=True, right_index=True)

Add risk-free rate (assume constant for simplicity)
1 df['rf'] = 0.00001
We need a constant to run regressions
df['const'] = 1
df['exret_stock'] = df.ret_stock - df.rf
df['exret_sp'] = df.ret_sp - df.rf
Remove missing values
df.dropna(inplace=True)
Calculate the stock's alpha and beta
2 reg = sm.OLS(endog=df['exret_stock'],\
 exog=df[['const', 'exret_sp']], missing='drop')
results = reg.fit()
print(results.summary())
3 alpha = round(results.params['const']*100,3)
beta = round(results.params['exret_sp'],2)
Print the values of alpha and beta
print(f'The alpha of the stock of {ticker} is {alpha} percent.')
print(f'The beta of the stock of {ticker} is {beta}.')

Listing 14-10: The script to calculate stock alpha and beta

We import the modules and then specify the start and end dates of the
data you want to extract. We again use the most recent six-month period. We
also provide the ticker symbols of the market index, which is an index that
represents the market as a whole. The S&P 500 Index is often used, and that

Financial Applications 291

is what we will use. The company we’ll analyze is Microsoft Corporation. We
use the get_data_yahoo() method in the pandas_datareader module to extract
daily stock price information for the market index and Microsoft, and we
save the data as two pandas DataFrames named sp and stock, respectively.

We then calculate the daily stock returns for both the S&P 500 and
Microsoft. The shift() method in pandas allows us to shift the index by a
desired number of periods. We use shift(1) to obtain the price information
of the previous trading day. This allows us to see how today compared to
yesterday. Comparing the two days enables us to calculate returns. The gross
return is the current value divided by the value at the close of the previous
trading day, and the net return is the gross return minus one.

To calculate alpha and beta, we first merge the two datasets into one.
For simplicity, we use a small constant value for the risk-free rate 1. We
then use the OLS() method in the statsmodels module to run a regression 2
and print out the regression results. The alpha and beta we want are the
regression coefficients on the constant and the excess return on the mar-
ket, respectively 3.

Figure 14-7 shows the regression results.

Figure 14-7: Regression analysis results for Microsoft

Finally, we print out the values of the firm’s alpha and beta as follows:

The alpha of the stock MSFT is 0.202 percent.
The beta of the stock MSFT is 1.1.

The analysis shows that the alpha and beta are 0.202 percent and 1.1,
respectively. This means Microsoft has outperformed similar stocks on the
market by 0.202 percent per day, and the company has a market risk slightly
greater than an average firm (which has a beta of 1), which means the stock’s
return has been slightly more volatile than the market as a whole.

292 Chapter 14

Add Voice Control
Let’s add the voice control! You’ll ask about a company, and the script will
search for the ticker symbol, retrieve daily stock information, and calculate
the alpha and beta. Then the script will let you know that information by
voice. The phrase “stock report for” will trigger the stock report functionality.

Enter Listing 14-11 in your Spyder editor and save the script as alpha_
beta_hs.py in your chapter folder.

from datetime import date, timedelta
import statsmodels.api as sm
from pandas_datareader import data as pdr
import requests

from mptpkg import voice_to_text, print_say

1 def alpha_beta(firm):
 try:
 # Extract the source code from the website
 2 url = 'https://query1.finance.yahoo.com/v1/finance/search?q='+firm
 response = requests.get(url)
 # Read the JSON data
 response_json = response.json()
 # Obtain the value corresponding to "quotes"
 quotes = response_json['quotes']
 # Get the ticker symbol
 ticker = quotes[0]['symbol']
--snip--
 # Speak the values of alpha and beta
 3 print_say(f'The alpha of the stock of {firm} is {alpha} percent.')
 print_say(f'The beta of the stock of {firm} is {beta}.')

Start an infinite loop
4 while True:
 # Obtain voice input from you
 print_say("How may I help you?")
 inp = voice_to_text()
 print_say(f"You said {inp}.")
 # If you want to stop, say "stop listening"
 if inp == "stop listening":
 print_say("Nice talking to you; goodbye!")
 break
 # If keywords in command, go to the stock report functionality
 elif "stock report for" in inp:
 # Locate the company name
 pos = inp.find('stock report for ')
 5 firm = inp[pos+len('stock report for '):]
 alpha_beta(firm)
 continue
 # Otherwise, go to the next iteration
 else:
 continue

Listing 14-11: Voice-control the calculation of stock alpha and beta

Financial Applications 293

We import the modules, including the requests module and the print_say()
and voice_to_text() functions.

At 1, we start the definition of alpha_beta(), using the firm name as its
argument. As before, we use the plus sign to join words together to use as
search terms for the ticker symbol on Yahoo! Finance 2. We use try and
except to prevent crashes and let the user know if the entry is invalid. The
script then calculates the firm’s alpha and beta, as it does in alpha_beta.py,
and both prints and speaks the alpha and beta 3.

At 4, we start an infinite loop that asks for your voice input. To exit the
script, say, “Stop listening.” Otherwise, you say, “Stock report for” followed
by the company name to activate the stock report functionality. The script
extracts the company name from your voice command and prepares the
report for you 5.

Here’s my sample interaction:

How may I help you?
You said stock report for alibaba.
The alpha of the stock alibaba is 0.059 percent.
The beta of the stock alibaba is 0.61.

How may I help you?
You said stop listening.
Nice talking to you; goodbye!

I asked for the “stock report for Alibaba,” and the script obtained the
report for me and replied, “The alpha of Alibaba is 0.059 percent; the beta
of the stock Alibaba is 0.61.”

T RY IT OU T

Use alpha_beta_hs.py to obtain a stock report for British Petroleum.

 Summary
In this chapter, you applied the speech recognition and text-to-speech tech-
niques to the financial market. These skills—scraping information, forming
search terms that can be used in URLs, and retrieving real-time as well as
recent daily stock price information—can be applied to a huge variety of
web applications. You also learned a few data analysis and visualization skills,
which are also handy for many applications.

In the next chapter, you’ll create talking graphical market watches
for financial markets such as the US stock market or the foreign exchange
market.

294 Chapter 14

 End-of-Chapter Exercises

1. Modify price_plot.py so that the start and end dates are March 1, 2021
and June 1, 2021, respectively, and the plot color is red.

2. Modify candle_stick.py so that the dates on the x-axis are in the format
of 01-01-2021 (instead of 01/01/2021 or January 1, 2021) and rotated
15 degrees.

15
S T O C K M A R K E T W A T C H

In this chapter, you’ll create a graphical,
speaking app that monitors the US stock

market in real time. When you run the script
during trading hours, you’ll see a graphical dis-

play of the major stock indexes and a couple of stocks
you select. The app also lets you know the values of
the indexes and the stock prices in a human voice.

To build up the necessary skills, you’ll first create a graphical Bitcoin
watch to display live price information, using the Python tkinter package.
You can generalize these techniques to other financial markets such as the
world stock market or the US Treasury bond market.

As always, all scripts are available through the book’s resources page
at https://www.nostarch.com/make-python-talk/, and you should make the
folder /mpt/ch15/ for this chapter.

https://www.nostarch.com/make-python-talk/

296 Chapter 15

NE W SKIL L S

• Retrieving live Bitcoin prices

• Using and manipulating JSON data

• Making widgets and animations using the tkinter package

• Generalizing these techniques to other financial markets

 Bitcoin Watch
We’ll start with Bitcoin because the Bitcoin price is updated 24/7, unlike
the stock market, which gives live price updates only when it’s open. In the
process of creating a Bitcoin watch, you’ll learn the necessary skills to build
a market watch for other financial markets. The script tells you whenever
the Bitcoin price changes or if the price moves outside preset upper or
lower bounds.

You’ll first learn how to read JSON data and some basics of the tkinter
package.

How to Read JSON Data
Bitcoin prices are available online for free and are updated every minute or
so day and night. We’ll access Bitcoin prices through Python by using the
API https://api.coindesk.com/v1/bpi/currentprice.json. Open the URL with a web
browser, and you should see price information similar to Figure 15-1.

Figure 15-1: Live online information about Bitcoin price

https://api.coindesk.com/v1/bpi/currentprice.json

Stock Market Watch 297

This data is formatted in JSON and hard to read. There are so many
nested dictionaries, it’s hard to tell where one dictionary starts and ends.
We discussed in Chapter 14 how to make the data easier to understand by
using an online JSON data formatter.

Similar to what you did in that chapter, go to the online JSON data
formatter website, https://jsonformatter.curiousconcept.com/, paste the data
from Figure 15-1 into the designated space, and then click Process. The
formatter will convert the data into a much more readable format, shown
in Listing 15-1.

{
 1 "time":{
 "updated":"Mar 3, 2021 09:58:00 UTC",
 "updatedISO":"2021-03-03T09:58:00+00:00",
 "updateduk":"Mar 3, 2021 at 09:58 GMT"
 },
 2 "disclaimer":"This data was produced from the CoinDesk
 Bitcoin Price Index (USD). Non-USD currency data converted
 using hourly conversion rate from openexchangerates.org",
 3 "chartName":"Bitcoin",
 4 "bpi":{
 "USD":{
 "code":"USD",
 "symbol":"$",
 "rate":"51,462.6831",
 "description":"United States Dollar",
 "rate_float":51462.6831
 },
 "GBP":{
 "code":"GBP",
 "symbol":"£",
 "rate":"36,859.0146",
 "description":"British Pound Sterling",
 "rate_float":36859.0146
 },
 "EUR":{
 "code":"EUR",
 "symbol":"€",
 "rate":"42,617.8433",
 "description":"Euro",
 "rate_float":42617.8433
 }
 }
}

Listing 15-1: The formatted JSON data about the Bitcoin price

The dataset is a large dictionary of four elements with keys named
time 1, disclaimer 2, chartName 3, and bpi 4. The value for the bpi key is, in
turn, another dictionary with three keys: USD, GBP, and EUR. These represent
the Bitcoin price in US dollars, British pounds, and Euros, respectively.

https://jsonformatter.curiousconcept.com/

298 Chapter 15

We want the Bitcoin price in US dollars. The script bitcoin_price.py,
shown in Listing 15-2, retrieves the Bitcoin price and prints it out.

import requests

Specify the url to find the bitcoin price
url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
Retrieve the live information from bitcoin url
response = requests.get(url)
Read the JSON data
response_json = response.json()
Obtain the USD dictionary
usd = response_json['bpi']['USD']
Get the price
price = usd['rate_float']
print(f"The Bitcoin price is {price} dollars.")

Listing 15-2: The script to retrieve the Bitcoin price

We import the requests module and specify the URL for the live Bitcoin
price. We then use the get() method from the requests module to pull the data
from the API. The json() method in the requests module reads the informa-
tion into JSON format. We then extract the USD dictionary that contains all
the Bitcoin price information in US dollars. The value we need from the dic-
tionary is the price, and we use the rate_float key to retrieve it.

Finally, we print out the Bitcoin price. The output should be something
like this:

The Bitcoin price is 51462.6831 dollars.

T RY IT OU T

Run bitcoin_price.py and compare the result to a Google search for the current
Bitcoin price.

A Quick Introduction to the tkinter Package
Python’s default standard package for building a GUI is tkinter, short for Tk
interface. The tkinter package has a variety of widgets, which are various tools
like buttons, labels, entries, and message boxes. Widgets appear as differ-
ent types of small windows inside the top-level root window, but they can
also be stand-alone entities. We’ll focus on labels since we’ll use them in
the market watch projects.

N O T E For more information about Tk and tkinter, visit https://docs.python.org/3/
library/tkinter.html.

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html

Stock Market Watch 299

The tkinter package is in the Python standard library and needs no
installation. If you are using Linux and encounter the ModuleNotFoundError
when importing tkinter, execute this line of command in a terminal to
install it:

sudo apt-get install python3-tk

I’ll introduce you to the basics of tkinter, including how to set up a screen
and create a label widget. The script tk_label.py, shown in Listing 15-3, sets
up a screen and adds a label to it.

import tkinter as tk

Create the root window
root = tk.Tk()
Specify the title and size of the root window
root.title("A Label Inside a Root Window")
root.geometry("800x200")
Create a label inside the root window
label = tk.Label(text="this is a label", fg="Red", font=("Helvetica", 80))
label.pack()
Run the game loop
root.mainloop()

Listing 15-3: Create a label in the tkinter package

We import the tkinter package. We set up a root window, which is used
to hold all the widgets we’ll add to the script. We use the command Tk() and
name the root window root.

Labels are a simple form of widget used to display messages or images
for informational purposes. We give the root window a title, A Label Inside a
Root Window, which will appear in the title bar. We call the geometry() method
to specify the width and height of the root window as 800 by 200 pixels.

We initiate a label by using Label(), which takes the text (or image) you
want to display. You can optionally specify the color and font too. We use
red and set the font to ("Helvetica", 80).

With the pack() method, we specify where we want to put the label. The
default is to line up widgets starting from the top center of the root window.
Finally, mainloop() starts the game loop so that the window shows up and stays
on your computer screen.

Run the script and you should see Figure 15-2.

Figure 15-2: A label inside the root window in tkinter

300 Chapter 15

A Graphical Bitcoin Watch
Now we’ll create a graphical Bitcoin watch by using the tkinter package. Open
your Spyder editor and save the code in Listing 15-4 as bitcoin_tk.py in your
chapter folder.

import tkinter as tk
import requests

1 import arrow

Specify the url to find the Bitcoin price
url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
Create a root window to hold all widgets
2 root = tk.Tk()
Specify the title and size of the root window
root.title("Bitcoin Watch")
root.geometry("1000x400")
Create a first label using the Label() function
3 label = tk.Label(text="", fg="Blue", font=("Helvetica", 80))
label.pack()
Create a second label
label2 = tk.Label(text="", fg="Red", font=("Helvetica", 60))
label2.pack()

Define the bitcoin_watch() function
4 def bitcoin_watch():
 # Get the live information from Bitcoin url
 response = requests.get(url)
 response_json = response.json()
 price = response_json['bpi']['USD']['rate_float']
 # Obtain current date and time information
 tdate = arrow.now().format('MMMM DD, YYYY')
 tm = arrow.now().format('hh:mm:ss A')
 # Put the date and time information in the first label
 5 label.configure(text=tdate + "\n" + tm)
 # Put price info in the second label
 label2.configure(text=f'Bitcoin: {price}', justify=tk.LEFT)
 # Call the bitcoin_watch() function after 1000 milliseconds
 6 root.after(1000, bitcoin_watch)

Call the bitcoin_watch() function
bitcoin_watch()

Run the game loop
root.mainloop()

Listing 15-4: Create a graphical Bitcoin price watch

We import the necessary functions and modules, including the arrow
module to show the current time and date 1. We then use the Tk() method
to create a top-level root window and specify the title and the size 2.

Stock Market Watch 301

We create two labels using Label() 3. We first leave the messages in
both labels as empty strings because this information will fill in from the
Bitcoin watch. At 4, we define bitcoin_watch(). The function first uses the
requests module to obtain the Bitcoin price information from the URL we
provide. We also obtain the current date and time and save them in the
variables tdate and tm, respectively.

At 5, we put the current date and time information in the first label,
using the escape character \n to separate the lines. We put the live Bitcoin
price in the second label.

Next we set animation effects 6. We use after() to call another function
after a specified amount of time. The command after(1000, bitcoin_watch)
calls the function bitcoin_watch() after 1,000 milliseconds. Calling the com-
mand within the bitcoin_watch() function itself creates an infinite loop in
which all the command lines inside bitcoin_watch() will be executed every
1,000 milliseconds. The result is that the time is constantly updated, and you
can see the time value changes every second. If you keep the screen live long
enough, you will also see the Bitcoin price change every minute or so.

When run, the script should look similar to Figure 15-3.

Figure 15-3: Using the after() function to create an animated Bitcoin watch

T RY IT OU T

Run bitcoin_tk.py and watch it for about three minutes to see how often the
price updates.

A Talking Bitcoin Watch
Next we’ll add the speech functionality. Whenever the price updates, the
script will let you know in a human voice. We’ll also add an alert system:
when the Bitcoin price moves outside the preset upper and lower bounds,
the script will alert you out loud.

302 Chapter 15

Open bitcoin_watch.py from your chapter folder. Its differences from bit-
coin_tk.py are highlighted in Listing 15-5.

--snip--
from mptpkg import print_say

Specify the url to find the Bitcoin price
url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
--snip--
Create a second label
label2 = tk.Label(text="", fg="Red", font=("Helvetica", 60))
label2.pack()
Set up the price bounds
response = requests.get(url)
response_json = response.json()
1 oldprice = response_json['bpi']['USD']['rate_float']
maxprice = oldprice * 1.05
minprice = oldprice * 0.95
2 print_say(f'The Bitcoin price is now {oldprice}!')

Define the bitcoin_watch() function
def bitcoin_watch():
 3 global oldprice
 # Get the live information from Bitcoin url
 response = requests.get(url)
 response_json = response.json()
 price = response_json['bpi']['USD']['rate_float']
 # If there is update in price, announce it
 4 if price != oldprice:
 oldprice = price
 print_say(f'The Bitcoin price is now {oldprice}!')
 # If price goes out of bounds, announce it
 5 if price > maxprice:
 print_say('The Bitcoin price has gone above the upper bound!')
 if price < price:
 print_say('The Bitcoin price has gone below the lower bound!')
 # Obtain current date and time information
 tdate = arrow.now().format('MMMM DD, YYYY')
 tm = arrow.now().format('hh:mm:ss A')
--snip--

Listing 15-5: Script to create a talking graphical Bitcoin price watch

We import the modules, including the print_say() function from the
local mptpkg package.

We retrieve a Bitcoin price to use as the starting price and save it as
oldprice 1. We set the upper and lower bounds as values 5 percent above
and below the value stored in oldprice and save them as maxprice and minprice,
respectively. The script announces in a human voice the price of Bitcoin at
that moment 2.

We declare oldprice a global variable so that it can be recognized both
inside and outside the function bitcoin_watch() 3. Every time bitcoin_watch()

Stock Market Watch 303

is called, it obtains the latest Bitcoin price and compares it to the value
stored in oldprice. If the values are different, the value of oldprice is updated
to the new price, and the script announces the updated price 4.

At 5, the script checks whether the price has gone above the upper
bound; if yes, it makes the announcement. Similarly, the script checks whether
the price is below the lower bound and makes the announcement if it is.

This output is from running the script for a few minutes:

The Bitcoin price is now 51418.8064!
The Bitcoin price is now 51377.4967!
The Bitcoin price is now 51419.3027!

 A Talking Stock Market Watch
Now we’ll use these skills to build the talking, graphical, live US stock mar-
ket watch. We’ll make several significant changes to the Bitcoin version.

First, instead of showing just one asset, we’ll cover three major players in
the market: Apple, Amazon, and Tesla. We’ll also show, as the main indexes
we are interested in, the Dow Jones Industrial Average and the S&P 500.

Second, instead of updating every thousand milliseconds, we’ll ask the
script to update every two minutes. The script needs to retrieve five pieces
of information instead of just one, and updating too frequently will cause
information overload that could lead to the script freezing. More important,
the values for the market indexes and prices for the preceding three stocks
update every few seconds during the trading hours. Updating too often
would make the announcements come nonstop and be distracting. You can
choose to adjust the frequency that the script updates to your own liking.

Save the script in Listing 15-6 as stock_watch.py in your chapter folder or
download it from the book’s resources page.

import tkinter as tk

import arrow
from yahoo_fin import stock_info as si

from mptpkg import print_say

Create a root window hold all widgets
1 root = tk.Tk()
Specify the title and size of the root window
root.title("U.S. Stock Market Watch")
root.geometry("1100x750")
Create a first label using the Label() function
label = tk.Label(text="", fg="Blue", font=("Helvetica", 80))
label.pack()
Create a second label
label2 = tk.Label(text="", fg="Red", font=("Helvetica", 60))
label2.pack()
Set up tickers and names
tickers = ['^DJI', '^GSPC', 'AAPL', 'AMZN', 'TSLA']

304 Chapter 15

names = ['DOW JONES', 'S&P500', 'Apple', 'Amazon', 'Tesla']
Set up the oldprice values and price bounds
2 oldprice = []
maxprice = []
minprice = []
for i in range(5):
 p = round(float(si.get_live_price(tickers[i])), 2)
 oldprice.append(p)
 maxprice.append(p * 1.05)
 minprice.append(p * 0.95)
 if i <= 1:
 print_say(f'The latest value for {names[i]} is {p}!')
 else:
 print_say(f'The latest stock price for {names[i]} is {p} dollars!')

Define the stock_watch() function
3 def stock_watch():
 # Declare global variables
 global oldprice, maxprice, minprice
 # Obtain live information about the DOW JONES index from Yahoo
 4 p1 = round(float(si.get_live_price("^DJI")), 2)
 m1 = f'DOW JONES: {p1}'
 # Obtain live information about the SP500 index from Yahoo
 p2 = round(float(si.get_live_price("^GSPC")), 2)
 m2 = f'S&P500: {p2}'
 # Obtain live price information for Apple stock from Yahoo
 p3 = round(float(si.get_live_price("AAPL")), 2)
 m3 = f'Apple: {p3}'
 # Obtain live price information for Amazon stock from Yahoo
 p4 = round(float(si.get_live_price("AMZN")), 2)
 m4 = f'Amazon: {p4}'
 # Obtain live price information for Tesla stock from Yahoo
 p5 = round(float(si.get_live_price("TSLA")), 2)
 m5 = f'Tesla: {p5}'
 # Put the five prices in a list p
 5 p = [p1, p2, p3, p4, p5]
 # Obtain current date and time information
 tdate = arrow.now().format('MMMM DD, YYYY')
 tm = arrow.now().format('hh:mm:ss A')
 # Put the date and time information in the first label
 label.configure(text=tdate + "\n" + tm)
 # Put all the five messages on the stock market in the second label
 label2.configure(text=m1 +\
 "\n" + m2 + "\n" + m3 + "\n" + m4 + "\n" + m5, justify=tk.LEFT)
 # If there is update in the market, announce it
 6 for i in range(5):
 if p[i] != oldprice[i]:
 oldprice[i] = p[i]
 if i <= 1:
 print_say(f'The latest value for {names[i]} is {p[i]}!')
 else:
 print_say\
 (f'The latest stock price for {names[i]} is {p[i]} dollars!')
 # If price goes out of bounds, announce it

Stock Market Watch 305

 7 for i in range(5):
 if p[i] > maxprice[i]:
 print_say(f'{names[i]} has moved above the upper bound!')
 if p[i] < minprice[i]:
 print_say(f'{names[i]} has moved below the lower bound!')
 # Call the stock_watch() function
 8 root.after(120000, stock_watch)

Call the stock_watch() function
stock_watch()
Run the game loop
root.mainloop()

Listing 15-6: Script to create a talking, graphical live US stock market watch

We import the modules, including arrow to show the time and date and
yahoo_fin to obtain stock price information. We also import print_say() from
the local mptpkg package to make announcements.

Starting at 1, we create the tkinter root window and place two labels in it,
as we did in bitcoin_watch.py. We then create three lists: oldprice, maxprice, and
minprice 2. We use oldprice to keep track of the values of the two indexes
and the prices of the three stocks when we start running the script. The list
maxprice holds the five upper bounds, 5 percent above the corresponding
values in oldprice. Similarly, we define the five lower bounds in minprice.

The script then announces the values of the two indexes and the prices
of the three stocks. Note that we put dollars after the three stock prices, but
not after the two index values because index values are not measured in
dollars.

We define stock_watch() at 3, which declares oldprice a global variable.
Every time the function is called, it retrieves the values we’re interested
in 4. We keep two digits after the decimal for all values and save them in a
list p 5.

We obtain the time and date and put them in the first label. We put
the values of the two indexes and three stocks in the second label. At 6, we
check each of the five values for updates, and we print and announce any
updates. We also update the value stored in oldprice accordingly.

Starting at 7, we check whether any of the five values has gone out of
bounds. If yes, the script makes an announcement. Finally, we use after() to
create the animation effect 8. The stock_watch() function calls itself every
120,000 milliseconds, updating the screen every two minutes.

Here’s the output from one interaction with the script:

The latest value for DOW JONES is 31477.02!
The latest value for S&P500 is 3861.02!
The latest stock price for Apple is 124.65 dollars!
The latest stock price for Amazon is 3062.5 dollars!
The latest stock price for Tesla is 692.41 dollars!
The latest value for DOW JONES is 31460.43!
The latest value for S&P500 is 3859.14!
The latest stock price for Apple is 124.49 dollars!

306 Chapter 15

The latest stock price for Amazon is 3062.32 dollars!
The latest stock price for Tesla is 690.8 dollars!
The latest value for DOW JONES is 31434.83!
The latest value for S&P500 is 3853.88!
The latest stock price for Apple is 124.26 dollars!
The latest stock price for Amazon is 3052.31 dollars!
The latest stock price for Tesla is 687.56 dollars!

In just a few minutes, the script has updated all five values three times.
Figure 15-4 shows the final screen.

Figure 15-4: A graphical live US stock market watch

T RY IT OU T

Change the three stocks to Microsoft (ticker symbol MSFT), Goldman Sachs
(ticker symbol GS), and Delta Airlines (ticker symbol DAL). Run the script after
the change.

 Apply the Method to Other Financial Markets
We can apply these methods to other financial markets. If the price infor-
mation is available from Yahoo! Finance, the modification is minimal: we
just change the ticker symbols in the scripts.

If the price information is not available from Yahoo! Finance, search
online for a website that provides JSON data for the market and then use
the same method we used to retrieve the Bitcoin price.

Stock Market Watch 307

T RY IT OU T

Modify stock_watch.py to create a graphical watch for the Treasury bond rates.
The graph should display the following four rates: 13-Week Treasury Bill rate
(ticker symbol ^IRX), Five-Year Treasury Bond rate (ticker symbol ^FVX), Ten-
Year Treasury Bond rate (ticker symbol ^TNX), and 30-Year Treasury Bond rate
(ticker symbol ^TYX).

 Summary
In this chapter, you first learned how to retrieve information from JSON
data and use it to create a graphical Bitcoin watch using the tkinter package.
You obtained the live Bitcoin price online and created widgets with anima-
tions in tkinter.

With these skills, you made a graphical live market watch for the US
stock market with spoken alerts. The script generates a graphical display of
two major US stock indexes and three stocks that you’re interested in. When
the prices change, the script lets you know in a human voice. The script also
alerts you if an index value or a stock price goes outside the preset bounds.

You also learned how to apply this process to create a talking graphical
market watch for other financial markets.

 End-of-Chapter Exercises

1. Modify bitcoin_price.py to retrieve the price in British pounds instead of
US dollars and as a string variable instead of a floating-point number.

2. Modify tk_label.py so that the size of the root window is 850 by 160 pixels
and the message in the label displays here is your label.

3. Modify bitcoin_tk.py so that the screen refreshes every 0.8 seconds.

4. Modify bitcoin_watch.py so that the upper and lower bounds are set to 3
percent above and below the price when you start running the script.

16
U S E W O R L D L A N G U A G E S

So far, we’ve taught Python how to speak
and listen in English. But Python can

understand many other world languages. In
this chapter, you’ll first teach Python to talk in

several other languages with the modules we’ve been
using. I’ll then introduce a useful module called trans-
late, which can translate one language to another, and
you’ll use this to silently translate languages. Then we’ll
add the speech recognition and text-to-speech features
so you can speak one language to the Python script
and the script will say the translation in another lan-
guage of your choice.

310 Chapter 16

As usual, all scripts in this chapter are available at the book’s resources
page at https://www.nostarch.com/make-python-talk/. Start by creating the folder
/mpt/ch16/ for this chapter.

NE W SKIL L S

• Converting text to speech in major world languages

• Recognizing speech in major world languages

• Querying Wikipedia in major world languages

• Translating in text and with voice

 Text to Speech in Other Languages
To work with non-English languages, we’ll use gTTS because it supports
most major world languages. The downside to using gTTS is that it needs a
separate module to play the audio file, but the alternative (pyttsx3) doesn’t
support a wide range of non-English languages. Here we’ll try out the gTTS
module with a few examples.

Install Modules
To install the gTTS module in Windows, activate the virtual environment
chatting and then execute the following command in the Anaconda prompt
and follow the onscreen instructions:

pip install gTTS

If you’re using Mac or Linux, you should already have installed the gTTS
module in Chapter 4. However, Google Translate has been known to make
significant changes to the module, so you should upgrade to the latest
version by running the following command in a terminal with the virtual
environment chatting activated:

pip install --upgrade gTTS

You also need to install the pydub module to play audio files. You need to
do this step no matter whether you’re using Windows, Mac, or Linux. Execute
the following two lines of code in the Anaconda prompt (Windows) or a ter-
minal (Mac or Linux), with the chatting virtual environment activated:

conda install -c conda-forge pydub
conda install -c conda-forge ffmpeg

Follow the instructions all the way through.

https://www.nostarch.com/make-python-talk/

Use World Languages 311

Convert Text to Speech in Spanish
The script speak_spanish.py in Listing 16-1 shows how the gTTS module con-
verts written Spanish into spoken Spanish. Enter these lines of code in your
Spyder editor and save the script as speak_spanish.py in your chapter folder.

from io import BytesIO

from gtts import gTTS
from pydub import AudioSegment
from pydub.playback import play

Convert text to speech in Spanish
tts = gTTS(text='Buenos días',lang='es')
Create a temporary file
voice = BytesIO()
Save the voice output as an audio file
tts.write_to_fp(voice)
Play the audio file
voice.seek(0)
play(AudioSegment.from_mp3(voice))

Listing 16-1: Script to convert written Spanish to spoken Spanish

We first import the modules, including gTTS and pydub, that will play
the audio file.

Next, we use the gTTS() function to convert the Spanish phrase Buenos
días to spoken Spanish. The phrase can be literally translated to Good day.
The first argument to gTTS() specifies which phrase to convert, and the sec-
ond specifies what language to use. In this case, we use es, which stands for
Español, or Spanish (see Table 16-1 for a list of language codes).

The script generates a temporary file voice by using the BytesIO() function
in the io module. If you instead used a fixed filename (such as myfile.mp3),
the script may prevent you from overwriting the file when you rerun it and
can crash. By using a temporary file each time you run the script, you avoid
a crash.

Finally, we save the voice output as an audio file in the temporary file
voice we just created. Then we play the audio file by using the pydub module.
Run the script to hear Python say “Buenos días” in Spanish.

Support Text to Speech in Other Languages
The gTTS module can convert text to speech in most major languages.
Table 16-1 provides an incomplete list of the languages that the module
supports, followed by the code used in the gTTS() function.

312 Chapter 16

Table 16-1: Major World Languages and the
Corresponding Code in the gTTS Module

Language name Language code

Arabic ar

Chinese zh

Dutch nl

English en

French fr

German de

Italian it

Japanese ja

Korean ko

Portuguese pt

Russian ru

Spanish es

You can find a more comprehensive list at https://cloud.google.com/
speech-to-text/docs/languages/.

N O T E Earlier versions of the gTTS module provided different accents or dialects within a
language. For example, while the code es means Spanish, es-es means Spanish from
Spain and es-mx means Spanish from Mexico. Google Translate has since deprecated
this feature. If you get an error message by using accents or dialects within a lan-
guage, be sure to use only the two-letter language code.

Next, you’ll create a script to choose the language you want. After that,
you’ll ask the script to translate a phrase from text to spoken language.

Convert Text to Speech in World Languages
The script speak_world_languages.py in Listing 16-2 shows you how to convert
text to speech in several major world languages.

from io import BytesIO

from gtts import gTTS
from pydub import AudioSegment
from pydub.playback import play

Create a dictionary of languages and the corresponding codes
1 lang_abbre = {"english":"en",
 "chinese":"zh",

https://cloud.google.com/speech-to-text/docs/languages/
https://cloud.google.com/speech-to-text/docs/languages/

Use World Languages 313

 "spanish":"es",
 "french":"fr",
 "japanese":"ja",
 "portuguese":"pt",
 "russian":"ru",
 "korean":"ko",
 "german":"de",
 "italian":"it"}
2 lang = input("What language do you want to use?\n")
phrase = input("What phrase do you want to convert to voice?\n")
Convert text to speech
tts = gTTS(text=phrase,lang=lang_abbre[lang])
Create a temporary file
voice = BytesIO()
Save the voice output as an audio file
tts.write_to_fp(voice)
Play the audio file
voice.seek(0)
play(AudioSegment.from_mp3(voice))

Listing 16-2: Script to convert written language to spoken language

We create a dictionary lang_abbre, which maps different foreign lan-
guages to the corresponding codes in the gTTS module 1. The script then
asks what language you want to use. You can type in your choice in the
IPython console 2. Then type in the phrase you want to convert to voice at
the prompt.

The script converts your phrase into an audio file and saves it in the
temporary file voice. Then it plays the audio file by using the pydub module.

The following is an interaction with the script, with my text input in bold:

What language do you want to use?
chinese

What phrase do you want to convert to voice?
嗨,你好吗?

I first chose the language Chinese and then typed in the text 嗨,你好吗?,
which is the Chinese phrase for Hi, how are you? After running the script, I
heard Python speaking Chinese.

T RY IT OU T

Run speak_world_languages.py to speak and understand a language of your
choice. Convert a phrase from text to speech. If the language of your choice is
not in the dictionary lang_abbre, add it to the script (consult Table 16-1 for the
language code).

314 Chapter 16

 Speech Recognition in Major World Languages
The speech recognition module we’ve used throughout this book is able to
recognize other major world languages as well. We just need to let the script
know which language we want to use.

We’ll use Japanese as an example to illustrate how it works. The script
sr_japanese.py in Listing 16-3 recognizes spoken Japanese and converts your
voice into written text.

import speech_recognition as sr

Initiate speech recognition
speech = sr.Recognizer()
Use it to capture spoken Japanese
print('Python is listening in Japanese...')
with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 audio = speech.listen(source)
 1 my_input = speech.recognize_google(audio, language="ja")
 print(f"you said: {my_input}")
 except sr.UnknownValueError:
 pass

Listing 16-3: Speech recognition in Japanese

We first import the speech recognition module. Then we initiate speech
recognition by using the Recognizer() function. The script prints out the mes-
sage Python is listening in Japanese to prompt you to speak Japanese into the
microphone. We use the adjust_for_ambient_noise() function to reduce the
influence of any ambient noise on your voice input.

At 1, we specify Japanese by passing language="ja" in the recognize_google()
function. Recall from Chapter 3 that recognize_google() uses the Google Web
Speech API; this is in contrast to other methods such as recognize_bing(),
which uses the services of Microsoft Bing Speech, or recognize_ibm(), which
uses the services of IBM Speech to Text. The script then prints out your voice
input in Japanese.

Here’s my output from interacting with the computer:

Python is listening in Japanese...
you said: ありがとうございます

I said into the microphone “Thank you” in Japanese. The script cor-
rectly captures the phrase and prints it out.

You can easily modify sr_japanese.py by replacing language="ja" (and
the appropriate language titles in the prompts) with the language of your
choice so that you can interact with the computer in another language.
The list of world languages and their corresponding codes can be found at
https://www.science.co.il/language/Locale-codes.php.

https://www.science.co.il/language/Locale-codes.php.

Use World Languages 315

T RY IT OU T

Modify sr_japanese.py to use a language of your choice. Then run the script
and say “Good morning” into the microphone to check whether the output
is correct.

 A Talking Wikipedia
Wikipedia supports most major world languages, detailed at https://
en.wikipedia.org/wiki/List_of_Wikipedias. In Chapter 5, we created a talking
Wikipedia in English. We’ll build a version you can adapt to work with any
major language. Listing 16-4 uses Chinese. Enter the following code into
your Spyder editor and save it as wiki_world_languages.py.

from io import BytesIO

import speech_recognition as sr
from gtts import gTTS
from pydub import AudioSegment
from pydub.playback import play
import Wikipedia

from mptpkg import print_say

Create a dictionary of languages and the corresponding codes
lang_abbre = {"english":"en",
 "chinese":"zh",
 "spanish":"es",
 "french":"fr",
 "japanese":"ja",
 "portuguese":"pt",
 "russian":"ru",
 "korean":"ko",
 "german":"de",
 "italian":"it"}
Lang = input("What language do you want to use?\n")

Initiate speech recognition
speech = sr.Recognizer()
Request a query in a specified language
1 print_say(f"Say what you want to know in {lang}...")
Capture your voice query in the language of your choice
2 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 while True:
 try:
 audio = speech.listen(source)
 my_input = speech.recognize_google(audio, language=lang_abbre[lang])

https://en.wikipedia.org/wiki/List_of_Wikipedias
https://en.wikipedia.org/wiki/List_of_Wikipedias

316 Chapter 16

 break
 except sr.UnknownValueError:
 print_say("Sorry, I cannot understand what you said!")
Print out what you said
3 print(f"you said: {my_input}")
Obtain answer from Wikipedia and print out
wikipedia.set_lang(lang_abbre[lang])
Ans = wikipedia.summary(my_input)[0:200]
print(ans)
Convert text to speech in the language of your choice
4 tts = gTTS(text=ans,lang=lang_abbre[lang])
Create a temporary file
Voice = BytesIO()
Save the voice output as an audio file
tts.write_to_fp(voice)
Play the audio file
voice.seek(0)
play(AudioSegment.from_mp3(voice))

Listing 16-4: A talking Wikipedia in major world languages

We import the modules, including the wikipedia module we used in
Chapter 5. The dictionary lang_abbre maps different foreign languages to
the corresponding codes in the gTTS module. We’ll also use the language
codes in the speech_recognition module and the wikipedia module.

The script then asks what language you want to use 1. You can type in
your choice in the IPython console. Then speak your query into the micro-
phone in the language you chose 2. The script captures the voice input,
converts it to written text, and stores it in my_input.

N O T E While the three modules—gTTS, speech_recognition, and wikipedia—share the
same digit language code for most languages, there could be exceptions. Double-check
that the language of your choice has correct codes in all three modules.

The script then prints your query 3. After it does so, we set the lan-
guage of Wikipedia to the language of your choice. We then send the query
to Wikipedia and print the result. Finally, we convert the answer to speech
and let the script say it in a human voice 4.

Here is the output from an interaction with the script, with my written
and voice inputs in bold:

What language do you want to use?
chinese
Say what you want to know in chinese...
美利堅合眾國（英語：United States of America, 縮寫為USA,一般稱為United
States(U.S.或US),或America),中文通稱「美國」,是由其下轄50个州、華盛頓哥倫比亞
特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲
中部，東臨大西洋，北面是加拿大，南部和墨西哥及墨西哥灣接壤，本土位於溫帶、副熱
帶地區。阿拉斯加州位於北美大陸西

Use World Languages 317

I first typed in chinese as my choice of language. Then I said “United
States of America” in Chinese into the microphone, and the script stored
a short description of the United States in Chinese and both printed and
spoke it.

T RY IT OU T

Run wiki_world_languages.py to use your chosen language and try it out. If
your language is not in the dictionary lang_abbre, modify the script to add it.

 Create Your Own Voice Translator
Now you’ll create your own voice translator. When you speak to the script in
any major language, the script will translate it to another language of your
choice and speak it out.

We’ll first make a text version with the translate module, then add
speech recognition and text-to-speech features.

A Text-Based Translator
We first need to install the translate module, powered by Google Translate.
The module is not in the Python Standard Library, and we need to pip
install it. Open the Anaconda prompt (in Windows) or a terminal (in Mac
or Linux). With the virtual environment chatting activated, run the follow-
ing command:

pip install translate

Follow the instructions to finish the installation.
The script in Listing 16-5 translates English to Chinese, and translates

Chinese to English, by using text input. Open your Spyder editor and copy
the following code; then save it as english_chinese.py in your chapter folder.

Import the Translator function from the translate module
from translate import Translator

Specify the input and output languages
translator = Translator(from_lang="en",to_lang="zh")
Do the actual translation
translation = translator.translate("hello all")
print(translation)
Specify the input and output languages
translator = Translator(from_lang="zh",to_lang="en")
Do the actual translation
translation = translator.translate("请再说一遍")
print(translation)

Listing 16-5: Translation between English and Chinese

318 Chapter 16

We first import the Translator() function from the translate module. We
need to specify the input language (here, English from_lang="en") and the
output language (here, Chinese with to_lang="zh"). We translate the phrase
hello all from English to Chinese and print it.

Then we reverse the input and output languages to translate the phrase
请再说一遍 from Chinese to English and print it. The output is as follows:

大家好！
please say it again

We can modify the input and output languages in english_chinese.py to
use any two major world languages. To see the languages supported by the
translate module and their corresponding codes, check https://www.labnol.
org/code/19899-google-translate-languages/.

A Voice-Based Translator
Next, we’ll add speech recognition and text-to-speech functionality. Again,
we’ll hardcode the language to translate to and from, but you can easily
adapt this script to any supported language.

N O T E In Chapter 17, we’ll add a voice translator functionality to our ultimate VPA, in
which the script extracts the language you want to use. There we’ll make the language
choice dynamic.

This version translates English to Spanish and Spanish to English.
Open your Spyder editor and copy Listing 16-6. Save the script as voice
_translator.py in your chapter folder.

from io import BytesIO

from translate import Translator
import speech_recognition as sr
from gtts import gTTS
from pydub import AudioSegment
from pydub.playback import play

Initiate speech recognition
speech = sr.Recognizer()
Prompt you to say something in English
print('say something in English')
Capture spoken English
with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 audio = speech.listen(source)
 my_input = speech.recognize_google(audio, language="en")
 print(f"you said: {my_input}")
 except sr.UnknownValueError:
 pass

https://www.labnol.org/code/19899-google-translate-languages/
https://www.labnol.org/code/19899-google-translate-languages/

Use World Languages 319

Specify the input and output languages
1 translator = Translator(from_lang="en",to_lang="es")
Do the actual translation
translation = translator.translate(my_input)
2 print(translation)
Convert text to speech in Spanish
tts = gTTS(text=translation,lang='es')
Create a temporary file
voice = BytesIO()
Save the voice output as an audio file
3 tts.write_to_fp(voice)
Play the audio file
voice.seek(0)
play(AudioSegment.from_mp3(voice))
Prompt you to say something in Spanish
4 print('say something in Spanish')
Capture spoken Spanish
with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 audio = speech.listen(source)
 my_input = speech.recognize_google(audio, language="es")
 print(f"you said: {my_input}")
 except sr.UnknownValueError:
 pass
Specify the input and output languages
Translator = Translator(from_lang="es",to_lang="en")
Do the actual translation
translation = translator.translate(my_input)
print(translation)
Convert text to speech in Spanish
tts = gTTS(text=translation,lang='en')
Create a temporary file
voice = BytesIO()
Save the voice output as an audio file
tts.write_to_fp(voice)
Play the audio file
voice.seek(0)
play(AudioSegment.from_mp3(voice))

Listing 16-6: A voice translator between English and Spanish

We first import all modules. Then we initiate speech recognition by
using the Recognizer() function. Next, the script prints say something in
English to prompt you to speak the English phrase you want to translate.

The script captures your voice input, saves it in the variable my_input,
and prints it. At 1, we specify the input language as English and the out-
put language as Spanish. We then translate the text stored in my_input
to Spanish and print it 2. After printing the translation, we convert the
Spanish text to voice. Finally, we save the translation to an audio file and
play it 3.

320 Chapter 16

Starting at 4, we reverse the input and output languages. You can then
speak a Spanish phrase to translate, and the computer will give the English
translation.

Here is the output from an interaction with the script, with my voice
input in bold:

say something in English
you said: today is a great day
Hoy es un gran día.

say something in Spanish
you said: uno dos tres
1 2 3

I spoke the phrase “Today is a great day” in English. The script printed
and spoke the Spanish translation Hoy es un gran día. I then said in Spanish,
“uno, dos, tres.” The script correctly printed and spoke the English transla-
tion 1 2 3.

N O T E While most translations from the translate module are relatively accurate, it’s best to
avoid phrases with multiple meanings that may lead to inaccurate translations.

T RY IT OU T

Modify voice_translator.py to change the language to another language of
your choice. Use it to translate a phrase to English and translate a phrase from
English to that language.

 Summary
In this chapter, you adapted your speaking scripts to use any major world
language. Along the way, you learned to convert text to speech in major
world languages such as Spanish, Chinese, Japanese, French, and so on. You
also learned how to perform speech recognition in major world languages.
With these skills, you are able to interact with your computer in non-English
languages.

You then learned how to install the translate module, which can trans-
late text from one language to another. We combined the module with the
speech recognition and text-to-speech features to create a voice translator.
This is incredibly useful real-world functionality that can help make your
deployed applications globally adaptable.

17
U L T I M A T E V I R T U A L

P E R S O N A L A S S I S T A N T

In this chapter, you’ll load up a virtual per-
sonal assistant (VPA) with the interesting

projects in this book, like voice-controlled
games, voice translators, voice music activations,

and so on. You’ll first add a chatting functionality to the
script so you can carry out a daily conversation with the
VPA. You’ll create a dictionary of questions and answers.
Whenever your voice command matches one of the ques-
tions in the dictionary, the VPA speaks the answer from
the dictionary. This enables the VPA to answer certain
questions in a very particular way, instead of obtaining
an answer from Wikipedia or WolframAlpha.

322 Chapter 17

After that, you’ll add the following functionalities:

•	 The voice-activated music player from Chapter 5

•	 The voice-activated NPR News Now from Chapter 6

•	 The voice-activated radio functionality from Chapter 6

•	 The voice-activated Connect Four game from Chapter 13 (and the
tic-tac-toe game from the exercises)

•	 Stock price functionality that lets you find out the latest price of US
stocks and their index values from Chapter 15

•	 Translator functionality that renders English phrases in any major
world language in Chapter 16

The whole idea of a VPA is its convenience, so we’ll make adjustments
in these projects so that all added functionalities are 100 percent hands-
free. After a functionality is finished, the VPA will go back to the main
menu and wait for your voice command.

As usual, all scripts in this chapter are available at the book’s resources
page, https://www.nostarch.com/make-python-talk/. Start by creating the folder
/mpt/ch17/ for this chapter.

NE W SKIL L S

• Creating a chatting functionality

• Reading JSON data saved in a JSON file

• Modularizing six versions of tic-tac-toe or Connect Four

• Understanding the difference between naming and calling a function

• Adapting the functionality of existing projects so your VPA is 100 percent
hands-free

 An Overview of the Final VPA
Let’s have a look at the complete script of our final VPA. I’ll then explain its
individual functionalities one by one.

First you need to download several local module files. From the book’s
resources page (https://www.nostarch.com/make-python-talk/), find the follow-
ing files from the /mpt/mptpkg/ directory: mymusic.py, mynews.py, myradio.py,
myttt.py, myconn.py, mystock.py, and mytranslate.py. Put them in the same
directory as your self-made local package files (refer to Chapter 5 for
instructions). Make sure to place them in the package folder /mpt/mptpkg/
instead of the chapter folder /mpt/ch17/. Later in this chapter, I’ll explain
the purpose of these files.

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

Ultimate Virtual Personal Assistant 323

Next, open __init__.py from /mpt/mptpkg/. You began this file in
Chapter 5 and modified it in Chapters 7 and 8, so it should currently look
something like this:

from .mysr import voice_to_text
from .mysay import print_say
--snip--
from .myknowall import know_all

Add the seven lines of code in Listing 17-1 to the end of __init__.py.

from .mymusic import music_play, music_stop
from .mynews import news_brief, news_stop
from .myradio import live_radio, radio_stop
from .myttt import ttt
from .myconn import conn
from .mystock import stock_market, stock_price
from .mytranslate import voice_translate

Listing 17-1: Importing functions from local modules to the local package

This code imports the 11 functions (music_play(), music_stop(), and so
on) from the seven modules to the local package so you can later import
them at the package level.

Open the script vpa.py from Chapter 8 and add the highlighted parts in
Listing 17-2. Save the new script as vpa_final.py. You can also download the
script from the book’s resources.

import random
import json

Ensure the following functions are imported in /mpt/mptpkg/__init__.py
from mptpkg import voice_to_text, print_say, wakeup, timer,\
alarm, joke, email, know_all, music_play, music_stop,\
news_brief, news_stop, live_radio, radio_stop, ttt,\
conn, stock_price, stock_market, voice_translate

Open chats.json and put it in a dictionary
with open('chats.json','r') as content:
 chats = json.load(content)
Put the script in standby
while True:
--snip--
 # The script goes back to standby if you choose
 if "back" in inp and "stand" in inp:
 print_say('OK, back to standby, let me know if you need help!')
 break
 # Activate chatting
 elif inp in list(chats.keys()):
 print_say(random.choice(chats[inp]))
 continue
 # Activate music

324 Chapter 17

 elif "music by" in inp:
 music_play(inp)
 # Say stop to stop the music anytime
 while True:
 background = voice_to_text().lower()
 if "stop" in background:
 music_stop()
 break
 else:
 continue
 # Activate news
 elif "npr news" in inp:
 news_brief()
 # Say stop to stop the news anytime
 while True:
 background = voice_to_text().lower()
 if "stop" in background:
 news_stop()
 break
 else:
 continue
 # Activate the radio
 # Put chromedriver.exe in the same folder as this script
 elif "live radio" in inp:
 live_radio()
 # Say stop to stop the radio anytime
 while True:
 background = voice_to_text().lower()
 if "stop" in background:
 radio_stop()
 break
 else:
 continue
 # Activate the tic-tac-toe game
 elif "tic" in inp and "tac" in inp and "toe" in inp:
 ttt()
 continue
 # Activate the Connect Four game
 elif "connect" in inp and ('4' in inp or 'four' in inp):
 conn()
 continue
 # Activate the stock price functionality
 elif "stock price of" in inp:
 stock_price(inp)
 continue
 # Get market indexes
 elif "stock market" in inp:
 stock_market()
 continue
 # Activate the voice translator
 elif "how to say" in inp and " in " in inp:
 voice_translate(inp)
 continue

Ultimate Virtual Personal Assistant 325

 # Activate the timer
 elif "timer for" in inp and ("hour" in inp or "minute" in inp):
 timer(inp)
 continue
--snip--

Listing 17-2: Your final VPA

We first import the functions voice_to_text(), print_say(), wakeup(), and
so on from the local package mptpkg. We already imported these functions
in __init__.py from the local modules to the local package mptpkg, so here
we import the functions at the package level directly. Further, since the cus-
tom package mptpkg is installed on your computer (in editable mode), the
system knows where to find the files, and there is no need to tell the script
where to look.

We then add the functionalities to the script using a series of elif state-
ments. We start with the chatting functionality. We’ve prepared eight pairs
of questions and answers and put them in the dictionary chats. If your voice
input matches one of the eight questions, the chatting functionality is acti-
vated, and your VPA will speak the corresponding answer from chats.

The music functionality is activated by the phrase music by. The script
will retrieve the artist’s name you speak after saying “Music by . . .” and will
play a random song by that artist.

The news functionality is activated by the phrase NPR news. The script
will extract and play the audio file of the latest news brief from NPR News
Now. You can say “Stop” to stop the news, and the script will go back to the
main menu and ask, “How may I help you?”

The radio functionality is activated by the phrase live radio. The script
will play streaming audio from an online radio station. You can say “Stop”
anytime to return to the main menu.

The tic-tac-toe functionality is activated by the words tic, tac, and toe
together. A game board will appear on the screen, and before the game
starts, you can choose to play first or second as well as against a person, a
simple computer, or a smart computer.

The Connect Four functionality is activated by the words connect and
four together (or 4 in text). A game board will appear on the screen, and
you can choose to play first or second as well as against a person, a simple
computer, or a smart computer.

The stock price functionality is activated by the phrase stock price of.
The script will extract the company name you speak after “Stock price of . . .”
and tell you the latest price.

The stock market functionality is activated by the phrase stock market. The
script will tell you the values of the major indexes of the US stock market.

The voice translator functionality is activated by the phrase how to say
together with the word in. The script will extract the English phrase you
want to translate and the foreign language into which to translate it, then
give you the translation aloud.

Let’s look at the individual functionalities one by one in detail.

326 Chapter 17

 The Chatting Functionality
This chatting functionality is new. It will allow the VPA to provide a pre-
defined answer that you specify in the code, instead of an answer from
Wikipedia or WolframAlpha. We’re building a simple chat bot with only
eight questions, but interested readers can use the principles here to cre-
ate a more sophisticated chatting functionality with more questions and
answers. It might also be interesting to extend this functionality with arti-
ficial intelligence.

We’ll create a dictionary of questions and answers. Enter the text in
Listing 17-3 and save it as the file chats.json in /mpt/ch17/. These are our
question-response pairs.

{
"how are you":["i am good","i am fine"],
"who are you":["i am a Python script","i am a computer script"],
"what are your hobbies":["a script doesn't have hobbies"],
"what's your favorite color":["blue","white"],
"hi":["hi","hello"],
"hello":["hello","hi"],
"what can you do":["lots of things, try me"],
"how old are you":["a script doesn't have age",
"good question, I don't really know the answer to that"]}

Listing 17-3: The eight pairs of questions and answers in the chatting functionality

The file is in JSON format, meaning it can be shared among different
script languages.

To make the chatting functionality more interesting, we’ve prepared
multiple answers to some questions. Python will read the JSON file and
load the data into a dictionary object. The values are all Python lists, and
the script will randomly select an answer from the list. For example, if the
question is who are you, the answer will be either i am a Python script or i am
a computer script.

Let’s zoom in on the parts in vpa_final.py relevant to the chatting
functionality:

import import random
import json
--snip--
with open('chats.json', 'r') as content:
 chats = json.load(content)
--snip--
 # Activate chatting
 1 elif inp in list(chats.keys()):
 print_say(random.choice(chats[inp]))
 continue
--snip--

We import two modules. The random module is used to randomly select
an answer. The json module reads the JSON data. Both modules are in the
Python Standard Library, so installation is not needed.

Ultimate Virtual Personal Assistant 327

Then we open chats.json and read the content as a large string variable.
We use the load() function in the json module to load it into the dictionary
chats. When you run the VPA script, your voice is captured and converted
to text and stored in the string variable inp. If your question matches one of
the eight questions in chats, the chatting functionality is activated 1. Note
that list(chats.keys()) produces the list of the eight keys in chats, and if you
print the list, it looks like this:

["how are you", "who are you", "what are your hobbies", "what's your favorite
color", "hi", "hello", "what can you do", "how old are you"]

The script uses inp as the key to locate the corresponding value, which
is a list with one or two answers in it. The script randomly selects an answer
from the list and speaks it out.

Here’s one example interaction, with my voice input in bold:

--snip--
how may I help you?
you just said hello
hello

how may I help you?
you just said who are you
i am a computer script

how may I help you?
you just said what can you do
lots of things, try me

how may I help you?
you just said how old are you
a script doesn't have age
--snip--

After the computer asked, “How may I help you?” I said, “Hello” to the
microphone. Since hello is one of the eight questions, the chatting function-
ality was activated, and the computer selected one of the two answers (in
this case, hello).

I then asked three more questions: Who are you? What can you do?
How old are you? They all activated the chatting functionality.

T RY IT OU T

Run vpa_final.py and ask a question to activate the chatting functionality. Then
add two of your own question-and-answer pairs to chats.json. Run vpa_final.py
again and activate the chatting functionality twice by asking the two questions.

328 Chapter 17

 The Music Functionality
We’ll modify the script play_selena_gomez.py from Chapter 5 and add music
functionality to our final VPA. You’ll create a music module and import it
to the main script.

Create a Music Module
Open the file mymusic.py you just downloaded from the book’s resources
and saved in your local package folder /mpt/mptpkg. The code is shown in
Listing 17-4.

import os
import random
1 from pygame import mixer

from mptpkg import print_say

Define a function to play music
2 def music_play(v_inp):
 # Extract artist name
 pos = v_inp.find("music by ")
 v_inp = v_inp[pos+len('music by '):]
 # Separate first and last names
 names = v_inp.split()
 # Extract the first name
 firstname = names[0]
 # Extract the last name
 if len(names)>1:
 Lastname = names[1]
 # If no last name, use first name as placeholder
 else:
 lastname = firstname
 # Create a list to contain songs
 mysongs = []
 # If either first name or last name in the filename, put in list
 with os.scandir("../ch05/chat") as files:
 for file in files:
 if (firstname in file.name.lower() or lastname\
 in file.name.lower()) and "mp3" in file.name:
 mysongs.append(file.name)
 # Let you know if no song by the artist
 if len(mysongs) == 0:
 print_say(f"I cannot find any song by {names}.")
 else:
 # Randomly select one from the list and play
 mysong = random.choice(mysongs)
 print_say(f"play the song {mysong} for you.")
 mixer.init()
 mixer.music.load(f'../ch05/chat/{mysong}')
 mixer.music.play()

Define a function to stop music
3 def music_stop():

Ultimate Virtual Personal Assistant 329

 try:
 mixer.music.stop()
 except:
 print('no music to stop')

Listing 17-4: The script to add music functionality

In Chapter 5, you created the subfolder /chat/ in your chapter folder
/mpt/ch05/ and saved some MP3 files in it. Each filename should contain the
artist’s name—for example, SelenaGomezWolves.mp3 or katy_perry_roar.mp3—
so that the Python script can locate it. A typical song is about four minutes
long, which is a long time if you’re given a song that you don’t like, so you
also learned how to stop the song while it’s playing. The playsound and pydub
modules don’t allow the script to execute the next line of code while the
song is playing, but with pygame, the script does move to the next line of
code while the song is playing, allowing you to stop a song.

N O T E If you cannot install pygame on your computer, you can use the vlc module, which
also allows you to stop the song while it is playing. See Appendix A for instructions
on how to install the four modules that play audio files: pygame, vlc, playsound,
and pydub.

At 1, we import the mixer module from pygame, which can play audio
files. At 2, we start defining the music_play() function, which takes a voice
command v_inp as its argument. We locate the phrase music by in the
voice command and use that to extract the artist name.

We use the split() function to separate the first name and last name
and associate them with the variables firstname and lastname. The script
then goes into the appropriate folder and selects a song with the artist’s first
name or last name to play. Note here that we use ../ch05/chat to access the
subfolder /chat in the parallel folder /mpt/ch05.

We also define a music_stop() function, which will stop the music play-
ing 3. We use try and except here in case the script misunderstands your
voice input and tells you that no song by the artist can be found. If that hap-
pens, you can still say “Stop” to go back to the main menu without crashing
the script.

Activate the Music Functionality
Next, you’ll add the music module to the final VPA. Here’s the part of
vpa_final.py that’s relevant for the music functionality:

--snip--
from mptpkg import music_play, music_stop
--snip--
 # Activate music
 1 elif "music by" in inp:
 music_play(inp)
 # Say stop to stop the music any time

330 Chapter 17

 2 while True:
 background = voice_to_text().lower()
 if "stop" in background:
 music_stop()
 break
 else:
 continue
--snip--

We import music_play() and music_stop(), which you just created, and then
check for the activation phrase music by 1. Once activated, the music_play()
function is called, with your voice input taken as the argument.

While the music is playing, the script continues to execute the next line of
code, which starts an infinite loop listening for your voice input in the back-
ground 2. Any detected voice input is converted to the variable background. If
the word stop is detected, the music_stop() function is called. If the word stop
isn’t detected, the script goes to the next iteration and continues listening for
background voice input.

W A R N I N G Make sure to keep your speaker volume relatively low. If it’s too high, the music will
drown out your voice input, and it will be hard for the script to pick up your com-
mand and stop the music.

Here’s an example interaction with the music functionality, with my
voice input in bold:

--snip--
how may I help you?
you just said play music by katy perry
play the song KatyPerry- Hey Hey Hey.mp3 for you

After about one minute of that tune, I said, “Stop playing.” The music
stopped playing, and the script went back to the main menu and asked,
“How may I help you?”

N O T E Even after the song finishes playing, you need to say “Stop” to go back to the main
menu. If the script misunderstands your voice input and tells you that no song by the
artist can be found, you also need to say “Stop” to go back to the main menu.

T RY IT OU T

Save several songs by your favorite artist in the subfolder /mpt/ch05/chat. Run
vpa_final.py and activate the music functionality. Stop the song after a minute
or so.

Ultimate Virtual Personal Assistant 331

 The News Brief Module
We’ll modify the script npr_news.py from Chapter 6 and add a news func-
tionality to our final VPA. You’ll create a news module and import it to the
main script.

Create a News Module
The script mynews.py in Listing 17-5 creates the news module. This file is
available from the book’s resources and needs to be saved in the local pack-
age directory.

from random import choice

import requests
import bs4
1 from pygame import mixer

Define news_brief() function
2 def news_brief():
 # Locate the website for the NPR news brief
 url = 'https://www.npr.org/podcasts/500005/npr-news-now'
 # Convert the source code to a soup string
 response = requests.get(url)
 response.raise_for_status()
 soup = bs4.BeautifulSoup(response.text, 'html.parser')
 # Locate the tag that contains the mp3 files
 casts = soup.findAll('a', {'class': 'audio-module-listen'})
 # Obtain the weblink for the mp3 file related to the latest news brief
 cast = casts[0]['href']
 pos = cast.find("?")
 # Download the mp3 file
 3 mymp3 = cast[0:pos]
 x = choice(range(1000000))
 mymp3_file = requests.get(mymp3)
 with open(f'f{x}.mp3','wb') as f:
 f.write(mymp3_file.content)
 # Play the mp3 file
 mixer.init()
 mixer.music.load(f'f{x}.mp3')
 4 mixer.music.play()

Define the news_stop() function
5 def news_stop():
 try:
 mixer.music.stop()
 except:
 print('no news to stop')

Listing 17-5: The script to create a news functionality

At 1, we import mixer from pygame. We’ll use the pygame module so that
we can stop the news brief anytime. At 2, we define news_brief(). When this

332 Chapter 17

function is called, the script goes to the NPR news website, extracts the MP3
file associated with the latest news brief, and saves it on your computer 3.
The script uses music.play() to play the audio file 4.

We also define a news_stop() function that will stop playing the news file 5.

Activate the News Functionality
Let’s add the functionality you just created to the final VPA. Here are the
parts of vpa_final.py relevant to the news functionality:

--snip--
from mptpkg import news_brief, news_stop
--snip--
 # Activate news
 elif "npr news" in inp:
 news_brief()
 # Say stop to stop the news any time
 while True:
 background = voice_to_text().lower()
 if "stop" in background:
 news_stop()
 break
 else:
 continue
--snip--

We import news_brief() and news_stop() from mynews. We check for the
activation phrase NPR News in your voice command. It’s a good idea to say
“Play NPR News” or “Tell me the latest NPR news” instead of just “NPR
news,” because the first word or two may be cut off due to timing. Putting
something in front of “NPR News” provides a buffer.

Once activated, the news_brief() function is called, which extracts the
news brief audio file from the NRR News Now website and plays it using
pygame.

While the news is broadcasting, the script starts an infinite loop to
listen for your voice input in the background, listening for the word stop.
If the word is detected, the news_stop() function is called. Otherwise, the
script goes to the next iteration and continues listening for background
commands.

As with to the music-playing functionality, you need to keep your speaker
volume low so you can stop the audio by using voice input. After the news
brief is finished, you need to say “Stop” to go back to the main menu.

T RY IT OU T

Run vpa_final.py and activate the news functionality. Say “Stop” when the news
is finished to go back to the main menu.

Ultimate Virtual Personal Assistant 333

 The Live Radio Module
We’ll modify play_live_radio.py from Chapter 6 and add a radio module to
our final VPA. As usual, you’ll create the radio module and import it to the
main script.

Create a Radio Module
Frist we’ll create a radio module. The script myradio.py is shown in Listing 17-6.

Put chromedriver.exe in the same folder as vpa_final.py
from selenium import webdriver
from selenium.webdriver.chrome.options import Options

1 def live_radio():
 global button
 chrome_options = Options()
 chrome_options.add_argument("--headless")
 browser = webdriver.Chrome(executable_path='./chromedriver',\
 chrome_options=chrome_options)
 browser.get("https://onlineradiobox.com/us/")
 button = browser.find_element_by_xpath('//*[@id="b_top_play"]')
 button.click()

2 def radio_stop():
 global button
 try:
 button.click()
 except:
 print('no radio to stop')

Listing 17-6: The script to create livestreaming radio functionality

First, you need to put the file chromedrive.exe in the same folder as the
VPA script (that is, in /mpt/ch17). At 1, we define the live_radio() function.
We make button a global variable so we can use it again later in another func-
tion. We use the headless option, which provides the same functionalities as
the regular Chrome browser but does not display the browser window on the
desktop. Then we define button as the play button on the online radio station
Online Radio Box. The button is clicked via voice control so that the radio
starts streaming when live_radio() is called.

At 2, we define a radio_stop() function that stops the radio playing. Note
here that we need to make button a global variable as well so that it can be
modified in radio_stop().

Activate the Radio Functionality
Next, add the radio functionality you just created to the final VPA. Here are
the relevant parts of vpa_final.py:

--snip--
from mptpkg import live_radio, radio_stop

334 Chapter 17

--snip--
 # Activate the radio
 # Put chromedriver.exe in the same folder as this script
 elif "live radio" in inp:
 live_radio()
 # Say stop to stop the radio anytime
 while True:
 background = voice_to_text().lower()
 if "stop" in background:
 radio_stop()
 break
 else:
 continue
--snip--

We first import the live_radio() and radio_stop() functions you just cre-
ated from the local mptpkg package. We listen for the activation phrase live
radio. Again, it’s a good idea to include a word or two in front of “live radio”
to provide a buffer.

Once activated, live_radio() is called, which goes to Online Radio Box
and clicks the play button to stream the audio.

While the radio is playing, the script starts an infinite loop to listen
for background voice input, which if detected is stored in background. If the
word stop is detected, radio_stop() is called to press the play button again so
that the audio stops streaming. Otherwise, the script goes to the next itera-
tion and listens for background voice commands.

T RY IT OU T

Run vpa_final.py and activate the radio functionality. Stop the radio after a
minute or so.

 The Tic-Tac-Toe Module
We’ll add a tic-tac-toe module so you can voice-activate the game and play
with the computer 100 percent hands-free. Here, we use one script to offer
six versions of the tic-tac-toe game: you can choose to play against another
person, a simple computer that makes random moves, or a smart computer
that thinks three steps ahead (recall Chapter 13). You can also choose to go
either first or second.

You’ll create a tic-tac-toe module and import it to the main script.

Create a Tic-Tac-Toe Module
First we’ll create a local tic-tac-toe module. The script myttt.py is based on the
scripts ttt_hs.py in Chapter 10 and ttt_think.py, which is the answer to question
#5 in the end-of-chapter exercises in Chapter 13 and is available at the book’s
resources website. I highlight the key parts of myttt.py in Listing 17-7.

Ultimate Virtual Personal Assistant 335

--snip--
def ttt():
 t.setup(600,600,100,200)
--snip--
 # Define the smart_computer() function
 1 def smart_computer():
 if turn == "blue":
 nonturn = "white"
 else:
 nonturn = "blue"
 # Choose center at the first move
 if "5" in validinputs:
 return "5"
--snip--
 for move in valids:
 tooccupy = deepcopy(occupied)
 tooccupy[turn].append(move)
 if win_game(tooccupy,turn) == True:
 winner.append(move)
--snip--
 # Obtain move from a human player
 2 def person():
 print_say(f"Player {turn}, what's your move?")
 return voice_to_text().lower()
 # Obtain a move from a simple computer
 3 def simple_computer():
 return choice(validinputs)
 # Ask you for your choice of opponent
 4 while True:
 print_say('''Do you want your opponent to be a person,
 a simple computer, or a smart computer?''')
 which_player = voice_to_text().lower()
 print_say(f"You said {which_player}.")
 if 'person' in which_player:
 player = person
 break
 elif 'simple' in which_player:
 player = simple_computer
 break
 elif 'smart' in which_player:
 player = smart_computer
 break
 # Ask if you want to play first or second
 5 while True:
 print_say("Do you want to play first or second?")
 preference = voice_to_text().lower()
 print_say(f"You said {preference}.")
 if 'first' in preference:
 preference = 1
 break
 elif 'second' in preference:
 preference = 2
 break

336 Chapter 17

 # Add a dictionary of words to replace
 to_replace = {'number ':'', 'cell ':'', 'column ':'',
 'one':'1', 'two':'2', 'three':'3',
 'four':'4', 'for':'4', 'five':'5',
 'six':'6', 'seven':'7', 'eight':'8','nine':'9'}
 # Start game loop
 while True:
 # See whose turn to play
 6 if (preference+rounds)%2 == 0:
 print_say(f"Player {turn}, what's your move?")
 inp = voice_to_text().lower()
 else:
 7 inp = player()
 if inp == None:
 inp = choice(validinputs)
 8 print_say(f"Player {turn} chooses {inp}.")
--snip--
 # If the move is a not valid one, remind
 9 if inp not in validinputs:
 print_say("Sorry, that's an invalid move!")
 # If the move is valid, go ahead
 else:
 # Go to the cell and place a dot of the player's color
--snip--
 a try:
 bye()
 except Terminator:
 print('exit turtle')

Listing 17-7: The script to create the tic-tac-toe functionality

Unlike in previous tic-tac-toe versions, here we don’t use the messagebox
module to remind us about wins, ties, and invalid moves because we cannot
use voice commands to remove the message box from the screen. You need
to physically click the box to make it disappear. Instead we’ll just print and
announce wins, ties, and invalid moves.

We define the ttt() function, which we’ll call from the VPA script to draw
the game board and ask whether you want to play against a person, a simple
computer, or a smart computer. After that, the script asks whether you want
to play first or second. Once the game is over, the board disappears from the
screen, and the script goes back to the main menu of the VPA automatically.

In the ttt() function, we use the smart_computer() function 1, which is
based on the best_move() function in ttt_think.py but gives you the option to
go first or second. We change blue and white to turn and nonturn, respectively,
so the computer can be the white player if it plays second. We also allow the
smart computer to occupy cell 5 if it’s empty even if it plays second because
doing so increases its chance of winning the game.

We then define the person() function 2, which allows a human player
to make a move by using voice commands. Similarly, the simple_computer()
function allows the computer to make a random move 3.

Ultimate Virtual Personal Assistant 337

At 4, we start an infinite loop. At each iteration, the script asks whether
you want to choose a person, a simple computer, or a smart computer as your
opponent. If your answer includes person, the variable player will be assigned
a value of person. If your answer includes simple or smart, player will be
assigned a value of simple_computer or smart_computer. Later, when we call the
player() function, one of the three functions person(), simple_computer(), or
smart_computer() will be called, depending on which function name is stored
in player.

N O T E Pay attention to the difference between a function name and the calling of a function.
For example, smart_computer is just a function name, while smart_computer() calls the
function and executes all command lines in it. What a difference the parentheses make!

At 5, we start an infinite loop to determine whether you want to play
first or second. If your answer includes first, the variable preference will be
assigned a value of 1. If your answer includes second, preference is assigned a
value of 2.

We then start the game loop. At each iteration, we first determine
whether you or your opponent has the turn, based on the values of pref-
erence and rounds 6. For example, if you choose to play first, the value of
preference is 1, and when the game starts, the value of rounds is 1. So the
condition (preference+rounds)%2==0 is met, and you’ll have the first turn at
the beginning of the game.

When it’s your opponent’s turn 7, the player() function is called. This
means one of the three functions, person(), simple_computer(), or smart
_computer(), is called, depending on the value stored in the player variable.
The script announces the move 8. If the move is not valid, the script asks
you or your opponent to choose again 9. Otherwise, a piece is placed on
the game board.

Finally, when the game ends, we do not include the done() function in
the script. As you may recall from the script guess_letter.py in Chapter 12,
without done(), the script goes to the bye() function after the while loop is
finished. This way, the game board will disappear from the screen a, and
you can go back to the main menu of your VPA script.

Activate Tic-Tac-Toe
Let’s now add the tic-tac-toe functionality to the final VPA. Here are the
relevant parts of the script vpa_final.py:

--snip--
from mptpkg import ttt
--snip--
 # Activate the tic-tac-toe game
 elif "tic" in inp and "tac" in inp and "toe" in inp:
 ttt()
 continue
--snip--

338 Chapter 17

We import the ttt() function you just created from the local mptpkg
package. To activate the tic-tac-toe game, you need to include tic, tac, and
toe in your voice command. Once the game is over, the game board disap-
pears, and you’ll go back to the main menu.

Here’s an example of one interaction, with my voice input in bold:

--snip--
How may I help you?
You just said play tic-tac-toe.

Do you want your opponent to be a person, a simple computer, or a smart
computer?
You said simple computer.

Do you want to play first or second?
You said first.

Player blue, what's your move?
Player blue chooses 5.
Player white chooses 9.

Player blue, what's your move?
Player blue chooses number 7.
Player white chooses 6.

Player blue, what's your move?
Player blue chooses number three.
Congrats player blue, you won!

How may I help you?
--snip--

I activated the game by saying “Play tic-tac-toe.” I then chose to play
first against a simple computer as my opponent. I won the game by occupy-
ing cells 5, 7, and 3.

T RY IT OU T

Run vpa_final.py and activate the tic-tac-toe functionality. Play a game with the
smart computer and let the computer move first.

 The Connect Four Module
At this point, adding the Connect Four module should be straightforward.
We can modify the tic-tac-toe module and change the game to Connect
Four. Then you’ll import the local module to the main script.

Ultimate Virtual Personal Assistant 339

Create a Connect Four Module
First we’ll create a Connect Four module. The script myconn.py is based on
conn_think_hs.py in Chapter 13 and myttt.py, which you just created. Again,
we won’t use messagebox to remind us about wins, ties, and invalid moves.
We’ll define a conn() function so that when the function is called, the game
appears onscreen and you can start playing.

As in the tic-tac-toe module, you can choose who goes first and who
your opponent is. We change red and yellow to turn and nonturn, respectively,
so that the computer can be the yellow player if it plays second.

To save space, I won’t explain myconn.py in detail here, but it’s available
at the book’s resources, in the folder /mpt/mptpkg. Open it now and take a
look; then go back to the main script for the VPA.

Activate Connect Four
Add the Connect Four module you just created to the final VPA, shown
here in vpa_final.py:

--snip--
from mptpkg import conn
--snip--
 # Activate Connect Four
 elif "connect" in inp and ('4' in inp or 'four' in inp):
 conn()
 continue
--snip--

We import the conn() function you just created from the local mptpkg
package. We listen for the activation phrase Connect Four in your voice com-
mand. Note that the script may convert your voice as either connect four or
connect 4. As a result, we need to use '4' in inp or 'four' in inp to cover
both cases.

Here is one sample output from a game:

--snip--
How may I help you?
You just said play connect four.

Do you want your opponent to be a person, a simple computer, or a smart
computer?
You said smart computer.

Do you want to play first or second?
You said second.
Player red chooses 4.

Player yellow, what's your move?
Player yellow chooses number three.
Player red chooses 1.

Player yellow, what's your move?

340 Chapter 17

Player yellow chooses number three.
Player red chooses 5.

Player yellow, what's your move?
Player yellow chooses number three.
Player red chooses 3.

Player yellow, what's your move?
Player yellow chooses number two.
Player red chooses 7.

Player yellow, what's your move?
Player yellow chooses number two.
Player red chooses 6.
Congrats player red, you won!

How may I help you?
--snip--

I chose to play second against the smart computer. By connecting
four discs horizontally in columns 4, 5, 7, and 6, the smart computer wins
the game.

T RY IT OU T

Run vpa_final.py and activate the Connect Four functionality. Play a game with
the simple computer and let the computer play second.

 The Stock Price Module
Now let’s add stock price functionality to our final VPA, building the mod-
ule and then importing it.

Create a Stock Market–Tracking Module
First we’ll create stock-monitoring functionality. The script mystock.py has
the code shown in Listing 17-8.

import requests
from yahoo_fin import stock_info as si

from mptpkg import print_say

Define stock_price() function
1 def stock_price(v_inp):
 # Extract company name
 pos = v_inp.find("stock price of")
 myfirm = v_inp[pos+len("stock price of "):]
 # Extract the source code from the website

Ultimate Virtual Personal Assistant 341

 # Prevent crashing in case there is no result
 try:
 # Extract the source code from the website
 2 url = 'https://query1.finance.yahoo.com/v1/finance/search?q='+myfirm
 response = requests.get(url)
 # Read the JSON data
 response_json = response.json()
 # Obtain the value corresponding to "quotes"
 quotes = response_json['quotes']
 # Get the ticker symbol
 ticker = quotes[0]['symbol']
 # Obtain real-time stock price from Yahoo
 3 price = round(float(si.get_live_price(ticker)),2)
 # Speak the stock price
 print_say(f"the stock price for {myfirm} is {price} dollars")
 # If price is not found, the script will tell you
 except:
 print_say("sorry, I cannot find what you are looking for!")

Define stock_market() function
4 def stock_market():
 # Obtain real-time index values from Yahoo
 dow = round(float(si.get_live_price('^DJI')),2)
 sp500 = round(float(si.get_live_price('^GSPC')),2)
 # Announces the index values
 print_say(f"The Dow Jones Industry Average is {dow}.")
 print_say(f"The S&P 500 is {sp500}.")

Listing 17-8: The script to create stock market–tracking functionality

At 1, we define the stock_price() function, saving the voice command
v_inp as the argument. We then locate the company name in your voice
command and use that to extract the ticker symbol of the firm’s stock 2.
The script goes to Yahoo! Finance and obtains the stock price based on the
ticker symbol 3. Finally, the script prints and announces the stock price.

We also define stock_market() 4. When this function is called, it will
retrieve the latest values of the Dow Jones Industrial Average and the S&P
500. The script then prints and announces the two values.

Activate the Stock Market–Tracking Functionalities
Now add the stock-monitoring module you just created to the final VPA.
Here are the relevant parts of vpa_final.py:

--snip--
from mptpkg import stock_market, stock_price
--snip--
 # Activate the stock price functionality
 elif "stock price of" in inp:
 stock_price(inp)
 continue
 # Get market indexes

342 Chapter 17

 elif "stock market" in inp:
 stock_market()
 continue
--snip--

We first import the stock_price() and stock_market() functions and listen
for the activation phrase stock price of in your voice command, such as, “Tell
me the stock price of General Motors.” The stock_price() function uses your
voice command as the argument and tells you the latest price for the com-
pany’s stock.

We then listen for the activation phrase stock market for the stock_market()
function. The script retrieves the latest values of the market indexes and
announces them to you.

The following is one interaction with the stock module, with my voice
input in bold:

--snip--
how may I help you?
you just said tell me the stock price of general motors
the stock price for general motors is 24.39 dollars

how may I help you?
you just said tell me about the stock market
the Dow Jones Industry Average is 26075.3
the S&P 500 is 3185.04

how may I help you?
--snip--

T RY IT OU T

Run vpa_final.py and find the latest stock price of Goldman Sachs. Then find
the values of the Dow Jones Industrial Average and S&P 500.

 The Voice Translator Module
We’ll finally add the translator functionality so that your VPA can translate
an English phrase into a foreign language of your choice.

Create a Translator Module
First we’ll create a translator module. The script mytranslate.py is shown in
Listing 17-9.

from mptpkg import print_say

1 lang_abbre = {"english":"en",
 "chinese":"zh",

Ultimate Virtual Personal Assistant 343

 "spanish":"es",
 "french":"fr",
 "japanese":"ja",
 "portuguese":"pt",
 "russian":"ru",
 "korean":"ko",
 "german":"de",
 "italian":"it"}

Import the platform module to identify your OS
import platform

If you are using Windows, use gtts
if platform.system() == "Windows":
 import random

 from translate import Translator
 from gtts import gTTS
 from pydub import AudioSegment
 from pydub.playback import play

 2 def voice_translate(inp):
 # Extract the phrase and the language name
 ps1 = inp.find('how to say')
 ps2 = inp.rfind(' in ')
 try:
 eng_phrase = inp[ps1+10:ps2]
 tolang = inp[ps2+4:]
 translator = Translator(from_lang="english",to_lang=tolang)
 translation = translator.translate(eng_phrase)
 tts = gTTS(text=translation, lang=lang_abbre[tolang])
 print_say(f"The {tolang} for {eng_phrase} is")
 print(translation)
 x = random.choice(range(1000000))
 tts.save(f'file{x}.mp3')
 play(AudioSegment.from_mp3(f"file{x}.mp3"))
 except:
 print_say("Sorry, cannot find what you are looking for!")

If you are not using Windows, use gtts-cli
if platform.system() == "Darwin" or platform.system() == "Linux":
 import os
 from translate import Translator
 from gtts import gTTS

 def voice_translate(inp):
 # Extract the phrase and the language name
 ps1 = inp.find('how to say')
 ps2 = inp.rfind(' in ')
 try:
 eng_phrase = inp[ps1+10:ps2]
 tolang = inp[ps2+4:]
 translator = Translator(from_lang="english",to_lang=tolang)
 translation = translator.translate(eng_phrase)
 print_say(f"The {tolang} for {eng_phrase} is")

344 Chapter 17

 print(translation)
 tr = translation.replace('"','')
 ab = lang_abbre[tolang]
 3 os.system(f'gtts-cli --nocheck "{tr}" --lang {ab} | mpg123 -q -')
 except:
 print_say("sorry, cannot find what you are looking for!")

Listing 17-9: The script to create a voice translator functionality

We start by importing the needed modules. In particular, we import
platform to identify your operating system. At 1, we create a dictionary
lang_abbre, which maps several world languages to their language codes
in Google Translate. Listing 17-9 includes 10 languages, and you can add
more to the dictionary if you prefer.

If you’re using Windows, at 2, we start the definition of the voice
_translate() function, which takes your voice command as the argument.
Your voice command should contain how to say and in. For example, you
can ask, “Python, how to say thank you in Japanese?” The script locates the
positions of how to say and in in your voice. It then extracts the English
phrase you want to translate and the target language and stores them in
variables eng_phrase and tolang, respectively.

N O T E While the string method find() locates the position of the first occurrence of a
substring, the rfind() method returns the position of the last occurrence. We use
rfind(' in ') in this script in case you include the word in in the English phrase
you want to translate, such as “How to say the cat in the hat in Spanish?”

We then use the Translator() class from translate to translate the English
phrase to the language you want in text. Next, the script converts the trans-
lation into voice. It saves the voice translation into an MP3 file and uses the
pydub module to play it.

If you’re using Mac or Linux, the process is similar except that you don’t
need to create and play the audio file. Instead, we use the command line
method gtts-cli to play the audio file directly without saving and retrieving
the audio file, similar to what we did in Chapter 4 3. Since we convert a for-
eign language to speech, we need to add the --lang option, followed by the
abbreviation for the language.

Activate the Voice Translator
Next, you’ll add the voice translator module you just created to the final
VPA, shown here:

--snip--
from mptpkg import voice_translate
--snip--
 # Activate the voice translator
 elif "how to say" in inp and " in " in inp:
 voice_translate(inp)
 continue
--snip--

Ultimate Virtual Personal Assistant 345

We import the voice_translate() function you just created and listen
for the activation phrase. Once the translator functionality is activated,
voice_translate() is called, using your voice input as the argument. The
function tells you the translation in a human voice.

The following is one interaction with the functionality, with my voice
input in bold:

--snip--
how may I help you?
you just said how to say good afternoon in japanese
the japanese for good afternoon is
こんにちは
--snip--

T RY IT OU T

Run vpa_final.py and ask it how to say “thank you” in a foreign language you
understand; then check that the translation is correct. If the foreign language is
not in the script mytranslate.py, add the language to it.

 Summary
In this chapter, you added several projects created earlier in the book to
your VPA. Along the way, you learned how to modify existing projects,
modularize them, and use their functionality in your VPA. You learned
how to use voice control to activate a functionality so that everything is 100
percent hands-free, and how to return to the main menu after the func-
tionality is finished. You also efficiently included six versions of the tic-tac-
toe or Connect Four game in a single module by allowing the script to ask
you a couple of questions before the game starts. With these skills, you’ll be
able to create your own functionalities and add them to your VPA.

A
I N S T A L L M O D U L E S

T O P L AY A U D I O F I L E S

In this appendix, I’ll discuss the various
modules for playing audio files in Python.

While there is no feasible way to account for
all the differences in hardware and operating

system combinations, I have tested the instructions
in this book on a variety of hardware and software
platforms. In doing so, I encountered various prob-
lems, and I want to help you avoid those problems.

There are two types of modules when it comes to playing audio files. The
first type (which we can call blocking) will take control of the script and won’t
let your execution move to the next line of code until the audio file is fin-
ished playing. We’ll discuss two modules in this category: playsound and pydub.
You need to make only one of them work for this book. The second type
won’t take control of the script; it simply moves on to the next line of code as
soon as the audio file starts playing (we can refer to this as non-blocking).
We’ll look at two modules in this category: vlc and pygame. Similarly, you need
to make only one of them work for this book.

348 Appendix A

Both module types are used in this book. The blocking type is the most
common, and we use it to play most audio files in our scripts. The non-
blocking type is useful when the audio file is long and you want the option
of pausing or stopping while it’s playing. We use this in Chapter 6 in the
script news_brief_hs.py and in the music-playing functionality in our ulti-
mate VPA script, vpa_final.py, in Chapter 17 .

Next, we’ll discuss how to install these four modules in different operat-
ing systems.

 Install the playsound Module
The playsound module is easy to use since the required lines of code are
minimal. However, installing in Mac or Linux may be difficult, even though
I have managed to install it in all three operating systems.

Windows
To install playsound in Windows, execute the following command in an
Anaconda prompt with your chatting virtual environment activated:

pip install playsound

Follow the instructions.

Mac
To install playsound in Mac, execute the following two commands in a termi-
nal with your chatting virtual environment activated:

pip install playsound
conda install -c conda-forge pygobject

Follow the instructions.

Linux
To install playsound in Linux, execute the following three commands in a
terminal with your chatting virtual environment activated:

pip install playsound
conda install –c conda-forge pygobject
conda install gstreamer

Follow the instructions.

 Install the pydub Module
The pydub module is easy to install in Mac or Linux. However, installing in
Windows may be difficult, even though I have managed to install it in all

Install Modules to Play Audio Files 349

three operating systems. To install pydub, execute the following commands
in your Anaconda prompt (Windows) or a terminal (Mac and Linux) with
your chatting virtual environment activated:

conda install –c conda-forge pydub
conda install –c conda-forge ffmpeg

 Install the pygame Module
Since software is constantly being updated, the installation instructions are
likely to change. I suggest you refer to the Pygame official website, https://
www.pygame.org/wiki/GettingStarted/, for instructions if you get stuck.

Windows
Execute this command in your Anaconda prompt with your chatting virtual
environment activated:

pip install pygame

Follow the instructions.

Mac
Recent versions of macOS require the installation of Pygame 2. To install,
execute this command in a terminal with your chatting virtual environment
activated:

pip install pygame==2.0.0

Then follow the instructions.

Linux
In Linux, execute the following three commands in a terminal with your
chatting virtual environment activated:

sudo apt-get install python3-pip python3-dev
sudo pip3 install pygame
pip install pygame

 Install the vlc Module
For the vlc module, you need to have VLC Media Player installed on your
computer no matter which operating system you are using. Go to the VLC
website at https://www.videolan.org/index.html to download the software and
install it.

In Linux, you can install the app by running this command in a terminal:

sudo apt-get install vlc

https://www.pygame.org/wiki/GettingStarted/
https://www.pygame.org/wiki/GettingStarted/
https://www.videolan.org/index.html

350 Appendix A

With your chatting virtual environment activated in an Anaconda
prompt (Windows) or a terminal (Mac or Linux), install the Python vlc
module by running the following command:

pip install python-vlc

 Sample Scripts to Test the Four Modules
In this section, we provide a sample script for each of the four modules to test
that the modules are running successfully. Again, you need to install only
one out of playsound and pydub and one out of vlc and pygame for this book.

Go to the book’s resources and download the file hello.mp3 for testing
purposes. Be sure to place the file in the same folder as the testing scripts
created next.

The playsound Module
Enter the following lines of code in your Spyder editor. Save the script as
test_playsound.py and run it. Alternatively, you can download it from the
book’s resources.

from playsound import playsound
playsound("hello.mp3")

If successful, you should hear a human voice saying, “Hello, how are you?”

The pydub Module
Enter the following lines of code in your Spyder editor. Save the script as
test_pydub.py and run it. Alternatively, you can download it from the book’s
resources.

from pydub import AudioSegment
from pydub.playback import play
play(AudioSegment.from_mp3("hello.mp3")

If successful, you should hear a human voice saying, “Hello, how are you?”

The pygame Module
Enter the following lines of code in your Spyder editor. Save the script as
test_pygame.py and run it. Alternatively, you can download it from the book’s
resources.

from pygame import mixer
mixer.init()
mixer.music.load("hello.mp3")
mixer.music.play()

If successful, you should hear a human voice saying, “Hello, how are you?”

Install Modules to Play Audio Files 351

The vlc Module
Enter the following lines of code in your Spyder editor. Save the script as
test_vlc.py and run it. Or you can download it from the book’s resources.

from vlc import MediaPlayer
player=MediaPlayer("hello.mp3")
player.play()

If successful, you should hear a human voice saying, “Hello, how are you?”

B
S U G G E S T E D A N S W E R S T O

E N D - O F - C H A P T E R E X E R C I S E S

This appendix provides suggested answers
to all end-of-chapter exercises in this book.

If you get stuck on any chapter questions,
you can study the answers here and move on.

While most chapters have end-of-chapter exercises,
Chapters 8, 16, and 17 do not, but they do have a lot
of try-it-out questions to help you practice.

 Chapter 1

1. Add this line of code:

print("Here is a third message!")

354 Appendix B

2. Here are the outputs, respectively:

2
9
2
2.3333333333333335
1
4
20

3. Add this line of code:

print(55 * 234)

 Chapter 2

1. Here are the outputs:

<class 'str'>
<class 'str'>
Kentucky Wildcats
WildcatsKentucky
Wildcats @ Kentucky
WildcatsWildcatsWildcats

2. The outputs are as follows:

<class 'float'>
<class 'float'>
3.46
-2.4
3.0

3. Here are the outputs:

<class 'int'>
57
0.0

4. The outputs are shown here:

<class 'bool'>
8<7
False
<class 'str'>
<class 'str'>

Suggested Answers to End-of-Chapter Exercises 355

5. These are the outputs:

-23
56
-23.0
8.0

6. Here are the outputs:

1
0.0
False

7. The outputs are as follows:

False
True
True
True

8. Here are the answers:

global: No, because it’s a Python keyword

2print: No, because you can’t start a variable with a number

print2: Yes

_squ: Yes

list: No, because list() is a Python built-in function

9. Here is the output:

this is A1
this is A2

10. The output is as follows:

this is A1
this is A2
this is C1
this is C2

11. This is the output:

this is A1
this is A2
this is B1
this is B2
this is C1
this is C2

356 Appendix B

12. The answers are shown here:

a.

0
1
2
3
4

b.

10
11
12
13
14

c.

10
12
14

13. 270

14. See the new script import_local_module1.py from the book’s resources.

15. The range and the average of the grades are 29 and 82.625, respectively.
You can use the following lines of code to get the answers:

midterm = [95, 78, 77, 86, 90, 88, 81, 66]
print("the range is", max(midterm)-min(midterm))
print("the average is", sum(midterm)/len(midterm))

16. The outputs are as follows:

rsity
y
University
rsity of Kentucky

17. If email = John.Smith@uky.edu, then email.find("y") returns 13.

18. The answers are shown here:

[2, 3, 5, 9]
5
3

19. The outputs are as follows:

["a", "hello", 2]
[1, "a", "hello", 2, "hi"]

Suggested Answers to End-of-Chapter Exercises 357

20. 10

21. (9,)

22. One way is to use the enumerate() method as follows:

lst = [1, "a", "hello", 2]
newdict = {}
for i, x in enumerate(lst):
 newdict[i] = x
print(newdict)

Another way is as follows:

lst = [1, "a", "hello", 2]
newdict = {i:lst[i] for i in range(len(lst))}
print(newdict)

 Chapter 3

1. Change

if inp == "stop listening":
 print('Goodbye!')

to

if inp == "quit the script":
 print('Have a great day!')

2. Add the following to the end of the script:

elif "open text" in inp:
 inp = inp.replace('open text ','')
 myfile = f'{inp}.txt)'
 open_file(myfile)
 continue

3. Change

import speech_recognition as sr
speech = sr.Recognizer()
def voice_to_text():
 voice_input = ""
 with sr.Microphone() as source:
 speech.adjust_for_ambient_noise(source)
 try:
 audio = speech.listen(source)
 voice_input = speech.recognize_google(audio)

358 Appendix B

 except sr.UnknownValueError:
 pass
 except sr.RequestError:
 pass
 except sr.WaitTimeoutError:
 pass
 return voice_input

to

from mysr import voice_to_text

Make sure you put the script mysr.py in the same folder as
voice_open_file.py.

 Chapter 4

1. See pyttsx3_adjust1.py, shown here:

import pyttsx3
engine = pyttsx3.init()
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[0].id)
engine.setProperty('rate', 160)
engine.setProperty('volume', 0.8)
engine.say("This is a test of my speech id, speed, and volume.")
engine.runAndWait()

2. See area_hs1.py, shown here:

Put mysr.py and mysay.py in the same folder as this script
from mysr import voice_to_text
from mysay import print_say
Ask the base length of the triangle
print_say('What is the base length of the triangle?')
Convert the voice input to a variable inp1
inp1 = voice_to_text()
print_say(f'You just said {inp1}.')
Ask the height of the triangle
print_say('What is the height of the triangle?')
Save the answer as inp2
inp2 = voice_to_text()
print_say(f'You just said {inp2}.')
Calculate the area
area = float(inp1)*float(inp2)/2
Print and speak the result
print_say(f'The area of the triangle is {area}.')

Suggested Answers to End-of-Chapter Exercises 359

 Chapter 5

1. Change

elif re2 == "too high":
 print_say("Is it 1?")
 while True:
 re3 = voice_to_text()
 print_say(f"You said {re3}.")
 if re3 in ("too high", "that is right", "too small"):
 break
 if re3 == "too small":
 print_say("It is 2!")
 sys.exit
 elif re3 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit

to

elif re2 == "too high":
 print_say("Is it 2?")
 while True:
 re3 = voice_to_text()
 print_say(f"You said {re3}.")
 if re3 in ("too high", "that is right", "too small"):
 break
 if re3 == "too high":
 print_say("It is 1!")
 sys.exit
 elif re3 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit

2. Change

print(answer)

to

print(answer[0:300])

3. Change

from pygame import mixer

to

import platform

360 Appendix B

and change

mixer.init()
mixer.music.load(f"./chat/{mysong}")
mixer.music.play()

to

if platform.system() == "Windows":
 os.system(f"explorer ./chat/{mysong}")
elif platform.system() == "Darwin":
 os.system(f"open ./chat/{mysong}")
else:
 os.system(f"xdg-open ./chat/{mysong}")

4. Change

and "mp3" in file.name

to

and "wav" in file.name

 Chapter 6

1. See parse_local2.py, shown here:

from bs4 import BeautifulSoup
textfile = open("UKYexample.html", encoding='utf8')
soup = BeautifulSoup(textfile, "html.parser")
ptags = soup.findAll("p")
atag = ptags[1].find("a")
print(atag['class'])
print(atag['href'])

2. See scrape_live_web2.py, shown here:

from bs4 import BeautifulSoup
import requests
url = 'http://libraries.uky.edu'
page = requests.get(url)
soup = BeautifulSoup(page.text, "html.parser")
div = soup.find('div', class_="sf-middle")
contact = div.find("div", class_="dashing-li-last")
area = contact.find('span', class_="featured_area")
print(area.text)
atag = contact.find('span', class_="featured_email")
print(atag.text)

Suggested Answers to End-of-Chapter Exercises 361

3. See voice_podcast.py, shown here:

from io import BytesIO
import requests
import bs4
from pygame import mixer
Import functions from the local package
from mptpkg import voice_to_text, print_say
def podcast():
 # Break a long url into multiple lines
 url = ('https://goop.com/the-goop-podcast/'
 'gwyneth-x-oprah-power-perception-soul-purpose/')
 # Convert the source code to a soup string
 response=requests.get(url)
 soup = bs4.BeautifulSoup(response.text, 'lxml')
 casts = soup.findAll\
 ('audio', {'class':'podcast-episode__audio-player'})
 casts = str(casts)
 start = casts.find("https")
 end = casts.find(".mp3")
 cast= casts[start:end+4]
 # Play the mp3 using the pygame module
 mymp3 = requests.get(cast)
 voice = BytesIO()
 voice.write(mymp3.content)
 voice.seek(0)
 mixer.init()
 mixer.music.load(voice)
 mixer.music.play()
while True:
 print_say('Python is listening...')
 inp = voice_to_text().lower()
 print_say(f'you just said: {inp}')
 if inp == "stop listening":
 print_say('Goodbye!')
 break
 # If "podcast" in your voice command, play podcast
 elif "podcast" in inp:
 podcast()
 # Python listens in the background
 while True:
 background = voice_to_text().lower()
 # Stops playing if you say "stop playing"
 if "stop playing" in background:
 mixer.music.stop()
 break

 Chapter 7

1. Here is a script:

import arrow
from mptpkg import print_say

362 Appendix B

dt = arrow.now().format('MMMM D, YYYY')
tm = arrow.now().format('hh:mm:ss A')
print_say(f'today is {dt}, and the time now is {tm}.')

2. Change

elif "stop" in voice_input:

to

elif "quit the script" in voice_input:

 Chapter 9

1. The changes are as follows:

import turtle as t

t.Screen()
t.setup(500,400,100,200)
t.bgcolor('blue')
t.title('Modified Screen')
t.done()
t.bye()

2. Change

t.forward(200)
t.backward(300)

to

t.backward(100)
t.forward(250):

3. The changes are as follows:

import turtle as t

t.Screen()
t.setup(600,500,100,200)
t.title('Python Turtle Graphics')
t.hideturtle()
t.up()
t.goto(100,100)
t.dot(60,'lightgreen')
t.goto(-100,-100)
t.dot(60,'lightgreen')
t.done()

Suggested Answers to End-of-Chapter Exercises 363

try:
 t.bye()
except Terminator:
 pass

4. Change

t.pencolor('blue')
t.pensize(5)

to

t.pencolor('red')
t.pensize(3)

5. The code is as follows:

import turtle as t
t.Screen()
t.setup(600,500,100,200)
t.bgcolor('green')
t.title('Python Turtle Graphics')
t.hideturtle()
t.tracer(False)
t.pensize(6)
t.goto(200,0)
t.goto(200,100)
t.goto(0,100)
t.goto(0,0)
t.update()
t.done()
try:
 t.bye()
except Terminator:
 pass

 Chapter 10

1. Change

t.goto(center)
t.write(cell,font = ('Arial',20,'normal'))

to

t.goto((center[0]-80, center[1]-80))
t.write(cell,font = ('Arial',15,'normal'))

364 Appendix B

2. Change

print(f'(x, y) is ({x}, {y})')

to

print(f'(x, y) is ({x}, {y})')
print('x+y is ', x+y)

3. Change

print('row number is ', row)

to

print(f'you clicked on the point ({x}, {y})')
print('row number is ', row)

4. Change

The blue player moves first
turn = "blue"

to

The white player moves first
turn = "white"

5. Delete the following from the script:

if '1' in occupied[turn] and '5' in occupied[turn] and '9' in
occupied[turn]:
 win = True
if '3' in occupied[turn] and '5' in occupied[turn] and '7' in
occupied[turn]:
 win = True

 Chapter 11

1. Change

done()

to

rownum = 1
for y in range(-250, 300, 100):

Suggested Answers to End-of-Chapter Exercises 365

 goto(325,y)
 write(rownum,font=('Arial',20,'normal'))
 rownum += 1
done()

2. Change

sleep(0.05)

to

sleep(0.025)

3. Delete the definition of the vertical4() function and delete the follow-
ing from the script:

if vertical4(x, y, turn) == True:
 win = True

4. Add the following to the dictionary to_replace:

'column ':'',

5. See conn_hs_2player.py at https://nostarch.com/make-python-talk/.

 Chapter 12

1. Change

coins[i].goto(-100 + 50 * i, 0)

to

coins[i].goto(-100 + 50 * i, -10)

2. Change

coins[-(i+1)].hideturtle()

to

coins[i].hideturtle()

3.

['H', 'i', ' ', 'P', 'y', 't', 'h', 'o', 'n']

366 Appendix B

 Chapter 13

1. Change

The red player moves first
turn = "red"

to

The yellow player moves first
turn = "yellow"

Then, delete

Computer moves first
computer_move()

Also, delete

Take column 4 in the first move
if len(occupied[3]) == 0:
 return 4

The complete script is in conn_think1_second.py at https://nostarch.com/
make-python-talk/.

2. See ttt_think1.py at the book’s resources website.

3. See ttt_think2.py at the book’s resources website.

4. The values are as follows:

cnt = {2:7, 1:5, 4:6}

Note that since both values 4 and 5 appear once, only one of them shows
up in the dictionary cnt because a dictionary cannot have two elements
with the same key: maxcnt = 4, and cnt[maxcnt] = 6.

5. See ttt_think.py at the book’s resources website.

6. See ttt_simulation.py and ttt_ml.py at the book’s resources website.

7. See outcome_ttt_think.py and outcome_ttt_ml.py at the book’s resources
website.

8. The yellow player has won the 10th game. Four discs are connected
horizontally (in columns 2, 3, 4, and 5).

 Chapter 14

1. Change

start_date = "2020-09-01"
end_date = "2021-02-28"

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

Suggested Answers to End-of-Chapter Exercises 367

to

start_date = "2021-03-01"
end_date = "2021-06-01"

and change

plt.plot(stock['Date'], stock['Adj Close'], c = 'blue')

to

plt.plot(stock['Date'], stock['Adj Close'], c = 'red')

2. Change

formatter = mdates.DateFormatter('%m/%d/%Y')

to

formatter = mdates.DateFormatter('%m-%d-%Y')

and change

plt.setp(fig.get_xticklabels(), rotation = 10)

to

plt.setp(fig.get_xticklabels(), rotation = 15)

 Chapter 15

1. Change

usd = response_json['bpi']['USD']
Get the price
price = usd['rate_float']
print(f"The Bitcoin price is {price} dollars.")

to

gbp = response_json['bpi']['GBP']
Get the price
price = gbp['rate']
print(f"The Bitcoin price is {price} pounds.")

368 Appendix B

2. Change

root.geometry("800x200")
Create a label inside the root window
label=tk.Label(text="this is a label", fg="Red", font=("Helvetica", 80))

to

root.geometry("850x160")
Create a label inside the root window
label=tk.Label(text="here is your label", fg="Red", font=("Helvetica",
80))

3. Change

root.after(1000, bitcoin_watch)

to

root.after(800, bitcoin_watch)

4. Change

maxprice = oldprice * 1.05
minprice = oldprice * 0.95

to

maxprice = oldprice * 1.03
minprice = oldprice * 0.97

I N D E X

Symbols
""" (triple quotation marks), 10, 95
(hash mark), 9
% (remainder) operator, 10
() (parentheses) operator, 37
* (asterisk) import statement, 43–44
* (multiplication) operator, 14–15,

29–30
*args argument, 42
** (exponent) operator, 10, 37
+ (addition) operator, 10, 14–15, 29–30
- (subtraction) operator, 10
/ (forward slash or division) operator,

10, 68
// (integer quotient) operator, 10
: (colon), 19, 40
<> (tag) operator, 112–113
= (assignment) operator, 14, 20
== (comparison) operator, 20
\ (backward slash), 68
\n (new line) character, 39
[] (square brackets) operator, 24, 34
{} (curly brackets) operator, 22, 33

A
<a> tags, 113, 114, 115
activate command, 46–47
addition (+) operator, 10, 29–30
adjust_for_ambient_noise() function,

58, 314
Advanced Linux Sound Architecture

(ALSA) messages, 70
after() function, 301
alarm clocks

building, 144–146
setting, 146–147

alarm() function, 146
alarm_clock.py script, 144–145

alerts, 301–303
aliases, 58, 171
alpha and beta values, 289, 291
alpha_beta() function, 293
alpha_beta_hs.py script, 292
alpha_beta.py script, 290
ALSA (Advanced Linux Sound

Architecture) messages, 70
Anaconda download and installation,

4–6
Anaconda navigator, 4–5, 6
append() method, 30–31
area_hs.py script, 85
arguments, 40, 41–42
arrow module, 136, 138–140, 300
assignment (=) operator, 14, 20
assignment statements, 244–245
asterisk import, 43–44
AttributeError message, 37
autofxt_xdate() function, 281

B
back4() function, 217, 245
backward() function, 173
backward slash (\), 68
Beautiful Soup library, 100, 112,

114–115, 119
BeautifulSoup() function, 115
best_move() function, 245, 249, 252, 256
beta and alpha values, 289, 291
bgcolor() function, 171
Bitcoin price API, 296
bitcoin_price.py script, 298
bitcoin_tk.py script, 300, 302
Bitcoin watch project, 296–303

graphical watch, 300–301
label widget, 299
price data, 296–298
talking watch, 301–303

370 Index

bitcoin_watch() function, 301, 302–303
bool() function, 17
bool type, 16–17
bools (Booleans), 16–17, 18
break command, 23
browsers See web browsers
bs4 module, 100, 115
built-in functions, 19, 38–40
bye() command, 171
BytesIO() function, 124

C
calculator project, 85–86
candlestick charts, 282–284
candle_stick() function, 287, 288
candlestick_ohlc function, 284
candle_stick.py script, 283
Cartesian coordinate system, 172
case sensitivity, 9, 16, 25, 59, 68, 108
cash.tif image, 230
cell_number() function, 194
cell_number.py script, 193–194
chats.json dictionary, 326
chatting functionality, 326–327
chatting virtual environment, 46–47
Chinese language translator project,

317–318
choice() function, 107, 149
Chrome browser, 126, 127
class (CSS) attributes, 113
clear() function, 183, 184
click() function, 127
code inspection, 8–9
colon (:), 19, 40
comments (#), 9–10
comparison (==) operator, 20
computer_move() function, 245, 256, 265
conda command, 6
conda install command, 46
conditional statements, 19–20
conn() function, 211–212, 218, 245,

323, 339
conn_board.py script, 208–209
conn_click.py script, 214–215,

217–218, 220
conn_hs.py script, 220
conn_ml_hs.py script, 266

conn_ml.py script, 255–256
conn_simulates.pickle file, 254, 261
conn_simulation.py script, 253–254
conn_think1.py script, 242–244, 248
conn_think2.py script, 248–249, 250
conn_think_hs.py script, 264–265
conn_think.py script, 250–251
Connect Four project. See also

Intelligent Connect Four
project, 208–224

game board drawing, 208–209
mouse-click version, 210–214
rules description, 208
rules implementation, 214–220
in ultimate VPA, 325, 338–340
voice-controlled version, 220–224

continue command, 22
copy module, 244
count() method, 32
create_lines.py script, 175–176
create_local_module.py script, 44
CSS (Cascading Style Sheets) styles,

113, 114
curly brackets ({}) operator, 22, 33

D
data visualization, 279
DataFrames, 291
date See time and date
DateFormatter() method, 281
deepcopy() function, 244
def statement, 44
define statement, 160
delimiters, 27
dict() method, 33
dictionaries, 33–37

accessing values in, 34
combining, 37
creating and adding to, 33–34
methods, 34–35
switching keys and values in, 36
using, 35–36, 151, 191, 199, 252,

313, 316
disc_fall.py script, 212–213
<div> tags, 100, 101, 117
division (/) operator, 10
done() function, 171, 337

Index 371

dot() function, 177–178
dots.py script, 177
down() function, 175
DPI (dots per inch), 281

E
editor panel, 7
elements (list), 27
elif keyword, 19–20
else statement, 19–20
email() function, 151, 152
emailing, 150–153

account setup, 150–151
module, 151–152
sending hands-free, 152–153

emails dictionary, 151
emails.py script, 150–151
english_chinese.py script, 317–318
enumerate() method, 30
escape characters, 39
exception handling, 60, 162–164, 174
explorer command, 65, 66
exponent (**) operator, 10
export command, 6
Extensible Markup Language (XML)

paths See XPaths
extract_last_name.py script, 25

F
False and True values, 16–17
f"{}" strings, 22
figure() function, 281
File menu item, 7
file open commands

by platform, 65–66
in voice activation project, 66–68

file paths
expression syntax, 68
in module creation, 44–45

file-reading project, 86–88
files. See also MP3 files

temporary, 124, 311
traversing in folders, 105

financial market projects. See also
Bitcoin watch project; stock
performance report project;
stock price data visualization

project; stock price
information project

ideas for, 306–307
find() method, 25–26, 140–141
findAll() function, 115
Firefox browser, 127
float() function, 17–18
float type, 15
floats (floating-point numbers), 15–16, 18
folders, navigating, 66
for loop, 21
forloop1.py script, 22
forloop2.py script, 23
forloop3.py script, 23
forloop.py script, 21
format() function, 139
forward() function, 173
forward slash (/), 68
forward4() function, 217, 245
forward_backward.py script, 173
from statement, 43
functions, 38–42

and backward compatibility, 119
built-in Python, 19, 38–40
defining, 40–42
generator, 158
help, 40
uses, 38

G
game simulations, 252–255, 257–259
games See Connect Four projects; Guess

the Number project;smart
game design; guess-the-word
project; tic-tac-toe projects

gedit command, 6
generator functions, 158
geometry() method, 299
get() method, 34
get_data_yahoo() function, 281, 291
get_date.py script, 140
getProperty() function, 81
get_score.py script, 34
get_ticker_symbol.py script, 276
get_time.py script, 138–139
get_xy() function, 193
global variables, 196

372 Index

Gmail passwords, 150
Gmail SMTP, 151
Google search project, 64–65
Google Translate, 310, 312, 317–318
Google Web Speech API, 58, 97
goto() function, 175
graphics See turtle screens
grid_lines.py script, 181–182
gtts-cli tool, 76–77, 344
gTTs() function, 311
gTTS module

installation, 46, 75, 310
language codes, 312
using, 74

gtts_slow.py script, 83
Guess the Number project, 94–98
guess-the-word project, 228–239

game board drawing, 228–229
guessing the letters, 231–234
load coin pieces, 230–231
rules description, 228
rules implementation, 234–237
voice-controlled version, 237–239

guess_hs.py script, 94, 95–97
guess_letter.py script, 232–233, 234
guess_word_board.py script, 228–229,

230, 232
guess_word_hs.py script, 237–238
guess_word.py script, 234–236

H
hash mark (#), 9
headless option, 128
help() command, 40, 45
hideturtle() function, 176
horizontal4() function, 216, 245
HTML (HyperText Markup Language)

parsing, 98–101, 114–116, 121–122
scraping live pages, 116–117
tags, 112–113
web page content, 113–114

HTTP (HyperText Transfer Protocol)
requests, 277

HuffPost quotes list, 149
hyperlinks, 113, 114

HyperText Markup Language See
HTML (HyperText Markup
Language)

HyperText Transfer Protocol (HTTP)
requests, 277

I
IBM Speech to Text, 58
if statements, 19–20
image scaling, 230–231
import statement, 43
importing modules and functions,

42–44
import_local_module.py script, 44
indentations, 9, 21–22
index() method, 31–32
IndexError errors, 216
indexes and indexing

dictionaries, 34
game board, 216
shift() method, 291
strings, 24, 25–26
timestamps as, 281
tuples, 37

IndexOutOfBounds errors, 216
init() function, 75
__init__.py file, 91–92, 323
input() function, 39
install command, 92
int() function, 17, 142
int type, 16
integer quotient (//) operator, 10
integers, 15–16, 18
Intelligent Connect Four project. See

also Connect Four project,
241–267

machine-learning design, 252–257
testing effectiveness of, 257–263
Think-Three-Steps-Ahead design,

242–252
voice-controlled, 264–267

io module, 124
IPython (interactive Python) console,

7, 39
items() method, 35

Index 373

J
Japanese speech recognition script, 314
join() method, 27
join_string.py script, 27
joke() function, 148, 149
joke-telling, 147–149
jokes list, 147–148
JSON (JavaScript Object Notation)

data formatter, 274–275,
296–297

json() method, 298
json module, 329–327

K
Keating, Barry, 231–232
key-value pairs, 33
keys() method, 34–35
keywords, 18
know_all() function, 164, 165
know_all.py script, 163
knowledge engines See wikipedia

module; WolframAlpha

L
Label() function, 299, 301
label widgets, 299
lang_abbre dictionary, 313, 316, 344
language codes, 312, 314, 316
languages See world languages projects
law of large numbers, 252–253
left() function, 174
left_right.py script, 174
len() function, 33, 166
Linux

Anaconda and Spyder
installation, 5–6

chrome browser driver, 127
file open commands, 65–66
in mysay module, 83–84
package installation, 92
pygame installation, 123
SpeechRecognition module

installation, 57
testing microphones in, 58
text-to-speech modules, 74, 75,

78–79

virtual environment activation, 47
voice customization, 82–83

list comprehension, 252
list() function, 33
list_append.py script, 30
listen() function, 137, 193
lists, 27–33

accessing elements in, 28
creating, 27–28
of lists, 28–29
methods, 30–33
operations on, 29–30

live_price_hs.py script, 277–278
live_price.py script, 272–273
live_radio() function, 128, 129, 323,

333, 334
load() function, 327
local modules, 44
local variables, 196
logic statements, 16–17
loop_in_loop.py script, 21
loops, 20–23
lower() method, 25, 68, 108

M
machine-learning game design, 252–257

effectiveness in Connect Four,
259–263

making intelligent moves, 255–257
simulated game data, 252–255
with voice control, 266–267

macOS
Anaconda and Spyder

installation, 5
chrome browser driver, 127
file open commands, 65–66
in mysay module, 83–84
package installation, 92
pygame installation, 123
SpeechRecognition module

installation, 57
testing microphones in, 58
text-to-speech modules, 74, 75,

78–79
virtual environment activation, 47
voice customization, 82–83

374 Index

Magic 106.7 FM, 129
mainloop() function, 299
mapping with lists, 28–29
mark_cell() function, 196–197
mark_cell.py script, 195–196
math calculation engine, 161
math module, 42–43
math operations, 10
matplotlib module, 279–280
matplotlib.pyplot module, 280
max() function, 33
messagebox module, 199, 336
Microphone() method, 58
microphones, 57–58
Microsoft Bing Speech, 58
min() function, 33
mixer module, 106–107
ml_move.py script, 260–261
ModuleNotFoundError message, 299
modules, 42–46

checking for installed, 45
creating, 44–45
importing from Python Standard

Library, 42–44
installing third-party, 46

most_freq_word.py script, 35–36
mouse click inputs, 192–195
mouse_click.py script, 192–193
MP3 files, 120, 121, 122
mpg123 player, 76
mplfinance module, 283
mptpkg package, 91
multi-player game scripts, 202
multiplication (*) operator, 14–15, 29–30
music player modules, 107
music player projects, 104–108, 325,

328–330
music_play() function, 323, 329, 330
music_stop() function, 323, 329, 330
my_firstmyemail.py scriptscript.py script,

7, 9–10
myalarm.py script, 134–135, 146
mychart.py script, 286
myconn.py script, 322, 323, 339
myemail script, 134–135
myemail.py script, 151–152
myjoke.py script, 134–135, 148
myknowall.py script, 164

mymusic.py script, 322, 323, 328–329
mynews.py script, 322, 323, 331
myplot.py script, 285–286
myradio.py script, 322, 323, 333
mysay module, 83–85
mysay.py script, 83–84
mysr module, 69–70
mysr.py script, 69
mystock.py script, 322, 323, 340–341
mytimer.py script, 134–135, 143
mytranslate.py script, 322, 323, 342–344
myttt.py script, 322, 323, 334–336
mywakeup.py script, 134–135, 137

N
negative indexing, 24, 216
nested loops, 21–22
new line (\n) character, 39
news_brief() function, 124, 323, 331, 332
news_brief_hs.py script, 123–124
news_hs.py script, 101–102
news.py script, 100
news reading projects, 98–102, 325,

331–332
news_stop() function, 323, 332
news_teaser() function, 102
newsfile.py script, 87
next() function, 158, 162
Nightly News with Lester Holt videos, 129
None value, 34
now() function, 139
NPR News website

parsing, 98–101
as podcast source, 119–120

npr_news.py script, 121

O
OLS() method, 291
Online Radio Box, 125–126, 127
online vs. offline methods, 58, 97
online_video() function, 130
onscreenclick() function, 193
open command, 65, 66
open() function, 61, 115, 122
open_file() function, 67
operators

math, 10
string, 14–15

Index 375

os module, 65, 66, 105–107
os_platform.py script, 65
outcome_conn_ml.py script, 259
outcome_conn_think.py script, 257–258

P
pack() method, 299
packages, 90–93

about, 90–91
creating, 91–92
distributing, 93
installing, 92
using, 92–93

PageError exception, 162
pandas module, 280
pandas_datareader module, 279–283, 291
parentheses (()) operator, 37
parse_local.py script, 115
parsing HTML code, 98–101, 114–116
pass command, 23
Path.cwd() function, 66
pathlib module, 65–66
pencolor() function, 175
pensize() function, 174
person() function, 336
PhotoImage() class, 230–231
pickle module, 261
pip install command, 46
pixels per inch, 281
platform module, 65
Play button, voice activation, 125–127
player() function, 337
play_genre.py script, 107–108
play_live_radio.py script, 127
play_selena_gomez.py script, 105–106
playsound module, 107, 329
plot() function, 281
plot graphs, 279–282
plot_chart_hs.py script, 287
Plots pane, 282
podcasts

extract and play, 119–122
voice activation of, 122–124

<p> tags, 114, 115
precedence of operations, 10
price_plot() function, 287, 288
price_plot.py script, 280
print() function, 7

print_say() function, 84, 85
pyaudio module, 56, 57
pydub module, 310, 329
pygame module

installation, 122–123
using, 107, 172, 329

Python. See also packages
built-in functions, 19
precedence of operations, 10
syntax, 9–10
variable naming rules, 18

Python Standard Library, 42
importing from, 42–44
list of modules in, 45

pyttsx3 module installation, 74–75
pyttsx3_adjust.py script, 82
pyttsx3_property.py script, 81–82

Q
queries. See also knowledge engines;

word choice
length condition, 166

Quick, Funny Jokes! website, 147–148
quotation marks usage, 9, 10, 16–17, 95
quotes listings, 147–148, 149

R
radio player projects, 125–129, 325,

333–334
radio_stop(), 323, 333, 334
random module, 106–107
range() function, 21, 38–39, 182
read() function, 87
reading aloud

from file, 86–88
in Speaking Newscast project,

101–102
in Voice-Controlled Wikipedia

project, 102–104
recognize_bing() function, 58, 314
recognize_google() function, 58, 314
recognize_ibm() function, 58, 314
recognize_sphinx() function, 58, 97
Recognizer() function, 58, 314
rectangle.py script, 180
regression analysis, 291
remainder (%) operator, 10
remove() method, 31

376 Index

repeat_me1.py script, 84
repeat_me2.py script, 93
repeat_me.py script, 79–80
replace() method, 25
RequestError message, 59, 60
requests module, 100, 277
rfind() method, 344
right() function, 174
root windows, 299, 300, 305
round() function, 15, 16
Run menu item, 7
runAndWait() function, 76

S
say() function, 75–76
scandir() function, 105
Scrape Live Web Pages project, 116–119
scrape_live_web.py script, 117–119
Screen() function, 171
screens See turtle screens
scripts

cross-platform, 65
exception handling in, 60, 174
Make Python Talk downloads, 3
pausing and exiting, 94
running, 7–8

selenium module, 125–127
sendmail() function, 151
setp() function, 284
setProperty() function, 82
setup() function, 171, 229
setup.py script, 92
set_up_screen.py script, 170
shift() method, 291
show_coins.py script, 230
show_disc.py script, 210–211
show_turtle.py script, 172
showinfo() function, 200
Simple Mail Transfer Protocol

(SMTP), 150, 151
simple_computer() function, 336
simulate function, 254, 258
simulation examples, 257–259
sleep() function, 95, 142, 213, 230
slicing, 24
smart_computer() function, 336

smart game design. See also machine
learning strategy; Think-
Three-Steps-Ahead strategy

about, 241–242
comparison of, 257–263

SMTP (Simple Mail Transfer Protocol),
150, 151

smtplib module, 150, 151
sort() method, 32–33
source command, 6
Spanish language

in dictionary example, 36–37
text to speech, 311
voice-based translator, 318–320

Speaking Newscast project, 98–102
speak_spanish.py script, 311
speak_world_languages.py script, 312–313
special characters, 18
speech properties customization, 81–83
speech recognition

services, 58
and volume, 330
word choice suggestions, 63, 97,

204–205, 223, 288, 320
speech_recognition() function, 137
SpeechRecognition module

importing speech_recognition,
57–58

installation, 56–57
in projects, 62
testing, 58–59
troubleshooting, 59–61
and world languages, 314

Sphinx speech recognition, 58, 97
split() method, 26–27
split_string.py script, 27
Spyder IDE (interactive development

environment)
download and installation, 4–6
inspecting code in, 8–9
Plots pane, 282
turtle script crashes, 174
in virtual environment, 47
writing and running scripts in, 6–8

square brackets ([]) operator, 24, 34
sr_japanese.py script, 314

Index 377

sr.py script, 58
standby mode, 136–138
stand_by1.py script, 70
stand_by.py script, 59–60
statsmodels module, 289–290
stock market-tracking module, 325,

340–342
stock performance indicators, 289
stock performance report project,

289–293
add voice control, 292–293
analyze performance and risk,

289–291
stock price data visualization project,

279–289
add voice control, 285–288
create candlestick charts, 282–285
create stock price plots, 279–282

stock price information project. See also
Talking Stock Market Watch
project, 272–279

find ticker symbols, 274–277
retrieve stock prices, 272–273
with voice control, 277–279

stock ticker symbols, 272, 274
stock_info module, 273
stock_market() function, 323, 341, 342
stock_plot() function, 286
stock_price() function, 323, 341, 342
stock_watch() function, 305
stock_watch.py script, 303–305
StopIteration exception, 162
str() function, 17
str type, 14
strings, 14–15, 23–27

conversions to, 18
definition and operations,

14–15, 23
indexing and slicing, 24
limiting, 103
methods, 25–27, 344

subsample() function, 230
subtraction (-) operator, 10
sum() function, 33
summary() function, 103
sys module, 94
system() function, 66, 107

T
tags (<>), 112–113, 113–114
Talking Stock Market Watch project,

303–306
team_sales.py, 41
temporary files, 124
Terminator errors, 174
test_gtts.py script, 77
test_pyttsx3.py script, 75
text-based translator project, 317–318
text-to-speech modules

installing, 74–75, 310
repeating and testing, 79–80
using, 75–79, 311–313

Think-Three-Steps-Ahead game
design, 242–252

one step ahead, 242–246
two steps ahead, 246–249
three steps ahead, 249–252
with voice control, 264–266

third-party module installation, 45–46
tic-tac-toe projects, 190–205

game board drawing, 190–192
game piece placement, 195–197
mouse click demonstration, 192–195
rules description, 190
rules implementation, 198–202
in ultimate VPA, 325, 334–338
voice-controlled version, 202–205

time and date
arrow module, 136
retrieving, 138–140

time module, 94, 230
timer() function, 143–144
timer.py script, 141–142
timers

building, 140–143
setting, 143–144

Tk() method, 299, 300
tkinter module, 44, 170, 171, 172, 231,

298–299
tk_label.py script, 299
TLS (Transport Layer Security)

encryption, 151
total_sales.py, 42
tracer() function, 179, 231
translate module, 317–318

378 Index

Translator() class, 344
translator projects, 317–320, 325,

342–345
Transport Layer Security (TLS)

encryption, 151
traverse.py script, 105
Treasury Bond rates projects, 307
triangle.py script, 178–179
True and False values, 16–17
try and except statement, 163
tts_mac_linux.py script, 78
tts_windows.py script, 77
ttt() function, 323, 336, 338
ttt_board.py script, 190–192
ttt_click.py script, 198–199
ttt_hs_2players.py script, 202
ttt_hs.py script, 203–204
tuples, 37–38
turtle module, 170, 171
turtle screens, 170–186, 192–195

animation, 182–185
custom shape drawing, 178–181
dot shape drawing, 177–178
drawing demonstration, 172–173
grid lines drawing, 181–182
and mouse clicks, 192–195
movement functions, 173–176
multiple turtles, 185–186
setup, 170–172

turtle_clock.py script, 183–184
two-player game scripts, 202
two_turtles.py script, 185–186
type() function, 14

U
UKYexample.html script, 113
Ultimate VPA project

chatting functionality, 326–327
Connect Four module, 338–340
live radio module, 333–334
music functionality, 328–330
news brief module, 331–332
overview, 322–325
stock price module, 340–342
tic-tac-toe module, 334–338
voice translator module, 342–345

UnboundLocalError messages, 196

UnknownValueError message, 59, 60
up() function, 175
update() function, 179, 183, 184

V
valid_moves() function, 250, 251
value types, 14
values() method, 35
variable explorer panel, 7
variables

bools, 16–17
converting types, 17–18
defined, 14
global vs. local, 196
naming rules, 18
numbers, 15–16
strings, 14–15

vertical4() function, 217, 245
video player projects, 129–131
Vimeo Katy Perry video, 131
virtual environments

creating, 46–47
installing modules in, 56–57

vlc module, 107, 123, 329
voice-activated projects

Google Search, 64–65
music player, 104–108
opening files, 65–68
podcasts, 119–124
radio player, 125–129
videos, 129–131

voice-based translator project, 318–320
voice-controlled projects

calculator, 85–86
Connect Four, 220–224, 264–267
guess-the-word game, 237–239
stock price retrieval, 277–279
talking Wikipedia, 102–104
tic-tac-toe, 202–205
web search, 61–65

voice customization, 81–83
voice_browse.py script, 62
voice_live_radio.py script, 128
voice_online_video.py script, 130
voice_open_file.py script, 66–67
voice_search.py script, 64
voice_to_text() function, 62, 63,

204–205

Index 379

voice_translate() function, 323,
344, 345

voice_translator.py script, 318–319
VPA (Virtual Personal Assistant). See

also Ultimate VPA project;
WolframAlpha

alarm clock module, 144–147
files download, 134–136
hands-free email, 150–153
joke-telling module, 147–149
know-it-all functionality, 165–166
retrieving time and date, 138–140
standby mode, 136–138
timer module, 140–144

vpa_final.py script, 323–325
vpa.py script

code, 135–136, 146, 149,
152–153, 165

using, 138, 144, 147, 149, 153,
165–166

W
Wait Wait . . . Don't Tell Me! (radio

show), 124
WaitTimeoutError message, 59, 60
wakeup() function, 137
Wall Street Journal, 61
web browsers

drivers for, 127
opening with voice, 61–63

web scraping
in live pages project, 116–119
in Speaking Newscast project,

98–101
web search project, 61–65
webbrowser module, 61, 121
webdriver() function, 127
while loop, 20–21
whileloop.py script, 20
widgets, 298–299
wiki_hs.py script, 103–104
Wikipedia, 315
wikipedia module, 103, 162, 163
wiki.py script, 103
wiki_world_languages.py script, 315–316
Windows

Anaconda and Spyder
installation, 4–5

chrome browser driver, 127
file open commands, 65–66
in mysay module, 83–84
package installation, 92
pygame installation, 123
SpeechRecognition module

installation, 56–57
testing microphones in, 58
text-to-speech modules, 74, 77–78
virtual environment activation,

46–47
voice customization, 81–82

win_game() function, 200, 217, 245, 254
WolframAlpha

about, 156
API key, 156–158
handling exceptions, 162–164
retrieving information, 158–159
uses, 159–162

wolframalpha module, 158, 163
wolfram.py script, 158
word choice suggestions, 63, 97,

204–205, 223, 288, 320
world languages projects, 310–320

dictionary applications, 36–37
modules, 82–83, 310
speech recognition, 314
talking wikipedia, 315–317
text-based translator, 317–318
text-to-speech conversions,

311–313
voice-based translator, 318–320

write() function, 184

X
xdg-open command, 65, 66
Xpaths, 126–127

Y
Yahoo! Finance, 272, 274
yahoo_fin package, 272

Z
zero-based indexing, 24
zoom() method, 231

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

IMPRACTICAL PYTHON PROJECTS
Playful Programming Activities to
Make You Smarter
by Lee Vaughan
424 pp., $29.95
isbn 978-1-59327-890-8

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based
Introduction to Programming
by Eric Matthes
544 pp., $39.95
isbn 978-1-59327-928-8

LEARN TO CODE BY
SOLVING PROBLEMS
A Python Programming Primer
by Daniel Zingaro
336 pp., $34.99
isbn 978-1-7185-0132-4

THE BIG BOOK OF SMALL
PYTHON PROJECTS
81 Easy Practice Programs
by Al Sweigart
432 pp., $39.99
isbn 978-1-7185-0124-9

PYTHON ONE-LINERS
Write Concise, Eloquent Python
Like a Professional
by Christian Mayer
216 pp., $39.95
isbn 978-1-7185-0050-1

BEYOND THE BASIC STUFF
WITH PYTHON
Best Practices for Writing Clean Code
by Al Sweigart
384 pp., $34.95
isbn 978-1-59327-966-0

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/make-python-talk/ for errata and more information.

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

This fun, hands-on book will take your basic Python
skills to the next level as you build voice-controlled
apps to use for everyday tasks. It begins with a
refresher on Python basics and an introduction to
speech recognition and text-to-speech functionalities.
Then, you’ll ease into more advanced topics like
creating your own modules and voice-controlled
games and apps.

Each chapter builds on previous projects,
allowing you to see real results from your code
at a manageable pace, while end-of-chapter
exercises strengthen your understanding. You’ll
design interactive games, like Connect Four and
tic-tac-toe, and create intelligent computer opponents
that talk and respond to commands. You’ll make a
real-time language translator, a hands-free music
player, and voice-activated financial apps that track
your favorite stocks or cryptocurrencies. Finally,
you’ll load all of these features into the ultimate
virtual personal assistant (VPA) that tells jokes,
reads the news, and gives you hands-free control
of your email, browser, music player, desktop files,
and more.

Learn how to:

• Build Python modules, create animations, and
integrate live data into an app

• Apply web-scraping skills to voice-control podcasts,
videos, and online searches

• Fine-tune speech recognition functions to accept a
variety of input

• Use speech commands for regular tasks like opening
files and accessing the web

• Design a VPA that can answer almost any question

Packed with downloadable cross-platform code
examples, fun and adaptable exercises, and detailed
images, Make Python Talk is your path to both Python
proficiency and real-world efficiency.

A B O U T T H E A U T H O R

Dr. Mark H. Liu is an associate professor and the
director of the Master of Science in Finance program
at the University of Kentucky, where he teaches Python
Predictive Analytics and runs Python workshops. He
has more than 20 years of coding experience.

$34.99 ($45.99 CDN)

B U I L T W I T H

 P Y T H O N 3 . x

“ H E L L O O O O ,

T H I S I S

P Y T H O N

C A L L I N G ”

	About the Author
	Introduction
		About This Book
		What’s in This Book?

	Part I: Getting Started
	Chapter 1: Setting Up Python, Anaconda, and Spyder
		Introducing Anaconda and Spyder
		Installing Anaconda and Spyder
	Install Anaconda and Spyder in Windows
	Install Anaconda and Spyder in macOS
	Install Anaconda and Spyder in Linux

		Using Spyder
	Write Python in Spyder
	Inspect Code in Spyder

		Understanding Coding in Python
	Python Syntax
	Basic Operations in Python

		Summary
		End-of-Chapter Exercises

	Chapter 2: Python Refresher
		Variables and Values
	Strings
	Floats
	Integers
	Bools
	Convert Variable Types
	Rules for Variable Names

		Loops and Conditional Execution
	Conditional Execution
	Loops
	Loops in Loops
	Loop Commands

		Strings
	String Indexing
	String Slicing
	String Methods

	Lists
	Create a List
	Access Elements in a List
	Use a List of Lists
	Add or Multiply Lists
	List Methods
	Use Built-in Functions with Lists
	list()

		Dictionaries
	Access Values in a Dictionary
	Use Dictionary Methods
	How to Use Dictionaries
	Switch Keys and Values
	Combine Two Dictionaries

	Tuples
		Functions
	Use Built-in Python Functions
	Define Your Own Functions

		Modules
	Import Modules
	Create Your Own Modules
	Use Third-Party Modules

		Create a Virtual Environment
	Activate the Virtual Environment in Windows
	Set Up Spyder in the Virtual Environment in Windows

		Summary
		End-of-Chapter Exercises

	Part II: Learning to talk
	Chapter 3: Speech Recognition
		Install the SpeechRecognition Module
	In Windows
	In Mac or Linux

		Test and Fine-Tune SpeechRecognition
	Import SpeechRecognition
	Test SpeechRecognition
	Fine-Tune the Speech Recognition Feature

		Perform a Voice-Controlled Web Search
	Use the webbrowser Module
	Add Voice Control
	Perform a Google Search

		Open Files
	Use the os and pathlib Modules to Access and Open Files
	Open Files via Voice Control

		Create and Import a Local Module
	Create the Local Module mysr
	Import mysr

		Summary
		End-of-Chapter Exercises

	Chapter 4: Make Python Talk
		Install the Text-to-Speech Module
	Setup
	Test Your Text-to-Speech Module

		Repeat After Me
		Customize the Speech
	Retrieve Default Settings in the pyttsx3 Module in Windows
	Adjust Speech Properties in the pyttsx3 Module in Windows
	Customize the gTTS Module in Mac or Linux

		Build the Local mysay Module
	Create mysay
	Import mysay

		Build a Voice-Controlled Calculator
		Read a File Aloud
		Summary
		End-of-Chapter Exercises

	Chapter 5: Speaking Applications
		Create Your Self-Made Local Python Package
	What’s a Python Package?
	Create Your Own Python Package
	Test Your Package
	More on Python Packages

	Interactive Guess the Number Game
	Speaking Newscast
	Scrape the News Summary
	Add the Text-to-Speech Features

	Voice-Controlled Wikipedia
	Access Wikipedia
	Add Speech Recognition and Text to Speech

	Voice-Activated Music Player
	Traverse Files in a Folder
	Python, Play Selena Gomez
	Python, Play a Country Song

		Summary
		End-of-Chapter Exercises

	Chapter 6: Web Scraping Podcasts, Radios, and Videos
		A Primer on Web Scraping
	What Is HTML?
	Extract Information with Beautiful Soup

	Scrape Live Web Pages
	Voice-Activated Podcasts
	Extract and Play Podcasts
	Voice-Activate Podcasts

	Voice-Activated Radio Player
	Install the selenium Module
	Control Web Pages
	Voice-Activate Live Radio

		Voice-Activated Videos
		 Summary
		End-of-Chapter Exercises

	Chapter 7: Building a Virtual Personal Assistant
		An Overview of Your VPA
	Download VPA Files
	Install the arrow Module

		Manage the Standby Mode
	Create the Local Module mywakeup
	Set Some Responses

		Ask Your VPA to Set a Timer
	Tell the Time with Python
	Build a Timer
	Create the mytimer Module
	Set the Timer

		Ask Your VPA to Set an Alarm Clock
	Build an Alarm Clock
	Create the Alarm Clock Module
	Set an Alarm

		Ask Your VPA to Tell a Joke
	Create Your Joke List
	Create a Joke Module
	Tell a Joke

		Send Hands-Free Email
	Send Email with Written Commands
	Create the Email Module
	Add the Email Functionality

		Summary
		End-of-Chapter Exercises

	Chapter 8: Know-It-All VPA
		Get Answers from WolframAlpha
	Apply for an API Key
	Retrieve Information
	Explore Different Areas of Knowledge

		Add a Know-It-All Functionality to Your VPA
	What WolframAlpha Cannot Answer
	Create the myknowall Module
	A VPA That Can Answer (Almost) Any Question for You

		Summary

	Part III: Interactive Games
	Chapter 9: Graphics and Animation with the turtle Module
		Basic Commands
	Create a turtle Screen
	Create Movements

		Basic Shapes
	Use the dot() Function
	Draw Your Own Shapes
	Draw Grid Lines

		Animation
	How Animation Works
	Use Multiple Turtles

		Summary
		End-of-Chapter Exercises

	Chapter 10: Tic-Tac-Toe
		Game Rules
		Draw the Game Board
		Create the Game Pieces
	How Mouse Clicks Work in turtle
	Convert Mouse Clicks to Cell Numbers
	Place Game Pieces

		Determine Valid Moves, Wins, and Ties
		Voice-Controlled Version
		Summary
		End-of-Chapter Exercises

	Chapter 11: Connect Four
		Game Rules
		Draw the Game Board
		The Mouse-Click Version
	Drop a Disc
	Animate the Falling Discs

		Determine Valid Moves, Wins, and Ties
		The Voice-Controlled Version
		Summary
		End-of-Chapter Exercises

	Chapter 12: Guess-the-Word Game
		Game Rules
		Draw the Game Board
		The Text Version
	Load the Coins
	Guess the Letters
	Determine Valid Guesses, Wins, and Losses

		The Voice-Controlled Version
		Summary
		End-of-Chapter Exercises

	Chapter 13: Smart Games: Adding Intelligence
		The Think-Three-Steps-Ahead Strategy
	Think One Step Ahead
	Think Two Steps Ahead
	Implement the Think-Two-Steps-Ahead Strategy
	Think Three Steps Ahead

		The Machine-Learning Strategy
	Create a Dataset of Simulated Games
	Apply the Data

		Test the Effectiveness of the Two Strategies
	The Think-Three-Steps-Ahead Strategy
	The Machine-Learning Strategy
	Why Doesn’t the Machine-Learning Strategy Work Well in Connect Four?

		Voice-Controlled Intelligent Connect Four Games
	A Voice-Controlled Game That Thinks Ahead
	A Voice-Controlled Game Using Machine Learning

		Summary
		End-of-Chapter Exercises

	Part IV: Going Further
	Chapter 14: Financial Applications
		Python, What’s the Facebook Stock Price?
	Obtain the Latest Stock Price
	Find Ticker Symbols
	Retrieve Stock Prices via Voice

		Voice-Controlled Data Visualization
	Create Stock Price Plots
	Create Candlestick Charts
	Add Voice Control

		Voice-Controlled Stock Report
	Analyze Recent Stock Performance and Risk
	Add Voice Control

		Summary
		End-of-Chapter Exercises

	Chapter 15: Stock Market Watch
		Bitcoin Watch
	How to Read JSON Data
	A Quick Introduction to the tkinter Package
	A Graphical Bitcoin Watch
	A Talking Bitcoin Watch

		A Talking Stock Market Watch
		Apply the Method to Other Financial Markets
		Summary
		End-of-Chapter Exercises

	Chapter 16: Use World Languages
		Text to Speech in Other Languages
	Install Modules
	Convert Text to Speech in Spanish
	Support Text to Speech in Other Languages
	Convert Text to Speech in World Languages

		Speech Recognition in Major World Languages
		A Talking Wikipedia
		Create Your Own Voice Translator
	A Text-Based Translator
	A Voice-Based Translator

		Summary

	Chapter 17: Ultimate Virtual Personal Assistant
		An Overview of the Final VPA
		The Chatting Functionality
		The Music Functionality
	Create a Music Module
	Activate the Music Functionality

		The News Brief Module
	Create a News Module
	Activate the News Functionality

		The Live Radio Module
	Create a Radio Module
	Activate the Radio Functionality

		The Tic-Tac-Toe Module
	Create a Tic-Tac-Toe Module
	Activate Tic-Tac-Toe

		The Connect Four Module
	Create a Connect Four Module
	Activate Connect Four

		The Stock Price Module
	Create a Stock Market–Tracking Module
	Activate the Stock Market–Tracking Functionalities

		The Voice Translator Module
	Create a Translator Module
	Activate the Voice Translator

		Summary

	Appendix A: Install Modules to Play Audio Files
		Install the playsound Module
	Windows
	Mac
	Linux

		Install the pydub Module
		Install the pygame Module
	Windows
	Mac
	Linux

		Install the vlc Module
		Sample Scripts to Test the Four Modules
	The playsound Module
	The pydub Module
	The pygame Module
	The vlc Module

	Appendix B: Suggested Answers to End-of-Chapter Exercises
		Chapter 1
		Chapter 2
		Chapter 3
		Chapter 4
		Chapter 5
		Chapter 6
		Chapter 7
		Chapter 9
		Chapter 10
		Chapter 11
		Chapter 12
		Chapter 13
		Chapter 14
		Chapter 15

	Index

