
SHELVE IN:
PROGRAM

M
ING LANGUAGES/

PYTHON

$34.95 ($45.95 CDN)

P R O G R A M S .
B U I L D  B E T T E R

C O D E  M O R E .
W R I T E  L E S S .

P R O G R A M S .
B U I L D  B E T T E R

C O D E  M O R E .
W R I T E  L E S S .

Sharpen your Python skills as you dive deep into the 
Python programming language with Serious Python. 
Written for developers and experienced programmers, 
Serious Python brings together more than 15 years of 
Python experience to teach you how to avoid common 
mistakes, write code more efficiently, and build better 
programs in less time. You’ll cover a range of advanced 
topics like multithreading and memoization, get advice 
from experts on things like designing APIs and dealing 
with databases, and learn Python internals to give you a 
deeper understanding of the language itself. 

You’ll first learn how to start a project and tackle 
topics like versioning, coding style, and automated 
checks. Then you’ll look at how to define functions 
efficiently, pick the right data structures and libraries, 
build future-proof programs, package your software 
for distribution, and optimize your programs down to 
the bytecode. You’ll also learn how to:

• Create and use effective decorators and methods, 
including abstract, static, and class methods

• Employ Python for functional programming using 
generators, pure functions, and functional functions

• Extend flake8 to work with the abstract syntax tree 
(AST) to introduce more sophisticated automatic 
checks 

• Apply dynamic performance analysis to identify 
bottlenecks in your code

• Work with relational databases and effectively 
manage and stream data with PostgreSQL

Take your Python skills from good to great. Learn from 
the experts and get seriously good at Python with 
Serious Python!

A B O U T  T H E  A U T H O R

Julien Danjou is a principal software engineer at Red 
Hat and a contributor to OpenStack, the largest existing 
open source project written in Python. He has been a 
free software and open source hacker for the past 
15 years.

www.nostarch.com

TH E  F I N EST  I N  G E E K  E NTE RTA I N M E NT ™
S

E
R

IO
U

S
 P

Y
T

H
O

N
S

E
R

IO
U

S
 P

Y
T

H
O

N
D

A
N

JO
U

S E R I O U S
P Y T H O N
S E R I O U S
P Y T H O N

B L A C K - B E L T  A D V I C E  O N  D E P L O Y M E N T ,

S C A L A B I L I T Y ,  T E S T I N G ,  A N D  M O R E

J U L I E N  D A N J O U

COVERS
PYTHON 2 AND 3



janelle
Sticky Note
Marked set by janelle



SeriouS Python





S e r i o u S 
P y t h o n

B l a c k - B e l t  A d v i c e  o n 
D e p l o y m e n t ,  S c a l a b i l i t y , 

t e s t i n g ,  a n d  M o r e

by Jul ien Danjou

San Francisco



SERIOUS PYTHON. Copyright © 2019 by Julien Danjou.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

Fifth printing

24 23 22 21          5 6 7 8 9

ISBN-10: 1-59327-878-0
ISBN-13: 978-1-59327-878-6

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson 
Interior Design: Octopod Studios
Developmental Editors: Liz Chadwick with Ellie Bru
Technical Reviewer: Mike Driscoll
Copyeditor: Paula L. Fleming
Compositor: Laurel Chun
Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com 
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Danjou, Julien, author.
Title: Serious Python : black-belt advice on deployment, scalability, 
   testing, and more / Julien Danjou.
Description: San Francisco, CA : No Starch Press, Inc., [2019].
Identifiers: LCCN 2018042631 (print) | LCCN 2018050473 (ebook) | ISBN 
   9781593278793 (epub) | ISBN 1593278799 (epub) | ISBN 9781593278786 (print) 
   | ISBN 1593278780 (print) | ISBN 9781593278793 (ebook) | ISBN 1593278799 
   (ebook)
Subjects:  LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 (ebook) | LCC QA76.73.P98 D36 2019 (print) | 
   DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2018042631

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other 
product and company names mentioned herein may be the trademarks of their respective owners. Rather 
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution 
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any 
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or 
indirectly by the information contained in it.

www.nostarch.com






About the Author
Julien Danjou has been a free software hacker for close to twenty years 
and has been developing software with Python for twelve years. He cur-
rently works as Project Team Leader for the distributed cloud platform 
OpenStack, which has the largest existing open-source Python codebase 
at 2.5 million lines of Python. Before building clouds, Julien created the 
awesome window manager and contributed to various software such as 
Debian and GNU Emacs.  

About the technical reviewer
Mike Driscoll has been programming with Python for more than a 
decade. He has been writing about Python on his blog, The Mouse vs. 
The Python, for many years. Mike is the author of several Python books 
including Python 101, Python Interviews, and ReportLab: PDF Processing 
with Python. You can find Mike on Twitter or GitHub via his handle: 
@driscollis. 





B r i e f  C o n t e n t s

Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xv

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Chapter 1: Starting Your Project .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Chapter 2: Modules, Libraries, and Frameworks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

Chapter 3: Documentation and Good API Practice   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Chapter 4: Handling Timestamps and Time Zones  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

Chapter 5: Distributing Your Software  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57

Chapter 6: Unit Testing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 75

Chapter 7: Methods and Decorators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99

Chapter 8: Functional Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119

Chapter 9: The Abstract Syntax Tree, Hy, and Lisp-like Attributes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135

Chapter 10: Performances and Optimizations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151

Chapter 11: Scaling and Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177

Chapter 12: Managing Relational Databases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187

Chapter 13: Write Less, Code More .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215





C o n t e n t s  i n  D e t a i l

Acknowledgments xv

IntroductIon 1
Who Should Read This Book and Why .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
About This Book .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

1
stArtIng Your Project 5
Versions of Python  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Laying Out Your Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

What to Do  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
What Not to Do  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Version Numbering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8
Coding Style and Automated Checks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

Tools to Catch Style Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
Tools to Catch Coding Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12

Joshua Harlow on Python  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13

2
modules, lIbrArIes, And FrAmeworks 15
The Import System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16

The sys Module .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Import Paths  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
Custom Importers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
Meta Path Finders  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19

Useful Standard Libraries  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
External Libraries  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

The External Libraries Safety Checklist  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Protecting Your Code with an API Wrapper  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

Package Installation: Getting More from pip  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
Using and Choosing Frameworks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Doug Hellmann, Python Core Developer, on Python Libraries .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

3
documentAtIon And good API PrActIce  33
Documenting with Sphinx  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34

Getting Started with Sphinx and reST  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
Sphinx Modules  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Writing a Sphinx Extension  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
Managing Changes to Your APIs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40
Numbering API Versions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41



xii   Contents in Detail

Documenting Your API Changes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Marking Deprecated Functions with the warnings Module  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
Christophe de Vienne on Developing APIs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45

4
HAndlIng tImestAmPs And tIme Zones 49
The Problem of Missing Time Zones  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
Building Default datetime Objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
Time Zone–Aware Timestamps with dateutil .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
Serializing Time Zone–Aware datetime Objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
Solving Ambiguous Times  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56

5
dIstrIbutIng Your soFtwAre 57
A Bit of setup .py History  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
Packaging with setup .cfg  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
The Wheel Format Distribution Standard  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
Sharing Your Work with the World  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Entry Points  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67

Visualizing Entry Points  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68
Using Console Scripts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Using Plugins and Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
Nick Coghlan on Packaging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74

6
unIt testIng 75
The Basics of Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76

Some Simple Tests .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
Skipping Tests  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
Running Particular Tests  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
Running Tests in Parallel .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
Creating Objects Used in Tests with Fixtures .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
Running Test Scenarios  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
Controlled Tests Using Mocking  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Revealing Untested Code with coverage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88

Virtual Environments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90
Setting Up a Virtual Environment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Using virtualenv with tox  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
Re-creating an Environment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94
Using Different Python Versions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
Integrating Other Tests .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95

Testing Policy .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
Robert Collins on Testing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97



Contents in Detail   xiii

7
metHods And decorAtors 99
Decorators and When to Use Them  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100

Creating Decorators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
Writing Decorators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
Stacking Decorators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
Writing Class Decorators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103

How Methods Work in Python  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107
Static Methods .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
Class Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
Abstract Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 110
Mixing Static, Class, and Abstract Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 112

Putting Implementations in Abstract Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114
The Truth About super  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117

8
FunctIonAl ProgrAmmIng 119
Creating Pure Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Generators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121

Creating a Generator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Returning and Passing Values with yield  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
Inspecting Generators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124

List Comprehensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125
Functional Functions Functioning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126

Applying Functions to Items with map()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Filtering Lists with filter()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Getting Indexes with enumerate()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Sorting a List with sorted()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
Finding Items That Satisfy Conditions with any() and all()  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
Combining Lists with zip()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129
A Common Problem Solved  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129
Useful itertools Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134

9
tHe AbstrAct sYntAx tree, HY, And lIsP-lIke AttrIbutes 135
Looking at the AST  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136

Writing a Program Using the AST  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
The AST Objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138
Walking Through an AST .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139

Extending flake8 with AST Checks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140
Writing the Class  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
Ignoring Irrelevant Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
Checking for the Correct Decorator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142
Looking for self  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143

A Quick Introduction to Hy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147
Paul Tagliamonte on the AST and Hy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147



10
PerFormAnces And oPtImIZAtIons 151
Data Structures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152
Understanding Behavior Through Profiling .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154

cProfile  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154
Disassembling with the dis Module  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 156

Defining Functions Efficiently  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158
Ordered Lists and bisect  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
namedtuple and Slots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 162
Memoization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
Faster Python with PyPy .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 169
Achieving Zero Copy with the Buffer Protocol  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 170
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174
Victor Stinner on Optimization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174

11
scAlIng And ArcHItecture 177
Multithreading in Python and Its Limitations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 178
Multiprocessing vs . Multithreading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
Event-Driven Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
Other Options and asyncio  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182
Service-Oriented Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
Interprocess Communication with ZeroMQ  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186

12
mAnAgIng relAtIonAl dAtAbAses 187
RDBMSs, ORMs, and When to Use Them  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187
Database Backends  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190
Streaming Data with Flask and PostgreSQL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190

Writing the Data-Streaming Application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
Building the Application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193

Dimitri Fontaine on Databases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 195

13
wrIte less, code more 201
Using six for Python 2 and 3 Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201

Strings and Unicode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
Handling Python Modules Moves  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
The modernize Module  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203

Using Python Like Lisp to Make a Single Dispatcher  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
Creating Generic Methods in Lisp  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204
Generic Methods with Python   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205

Context Managers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
Less Boilerplate with attr  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213

Index 215



A c k n o w l e d g m e n t s

Writing this first book has been a tremendous effort. Looking back, I had 
no clue how crazy this journey would be but also no idea how fulfilling it 
would turn out to be.

They say that if you want to go fast you should go alone, but that if 
you want to go far you should go together. This is the fourth edition of 
the original book I wrote, and I would not have made it here without the 
people who helped along the way. This is a team effort and I would like to 
thank everyone who participated.

Most of the interviewees gave me their time and trust without a 
second thought, and I owe a lot of what we teach in this book to them: 
Doug Hellmann for his great advice about building libraries, Joshua 
Harlow for his good humor and knowledge about distributed systems, 
Christophe de Vienne for his experience in building frameworks, Victor 
Stinner for his incredible CPython knowledge, Dimitri Fontaine for his 
database wisdom, Robert Collins for messing up with testing, Nick Coghlan 
for his work in getting Python into better shape, and Paul Tagliamonte for 
his amazing hacker spirit.



xvi   Acknowledgments

Thanks to the No Starch crew for working with me on bringing this 
book to a brand new level — especially to Liz Chadwick for her editing 
skills, Laurel Chun for keeping me on track, and Mike Driscoll for his 
technical insight.

My gratitude also goes to the free software communities who shared 
their knowledge and helped me grow, especially to the Python community 
which always has been welcoming and enthusiastic.



I n t r o d u c t I o n

If you’re reading this, the odds are good 
you’ve been working with Python for some 

time already. Maybe you learned it using 
some tutorials, delved into some existing pro-

grams, or started from scratch. Whatever the case, 
you’ve hacked your way into learning it. That’s exactly 
how I got familiar with Python up until I started work-
ing on big open source projects 10 years ago.

It is easy to think that you know and understand Python once you’ve 
written your first program. The language is that simple to grasp. However, 
it takes years to master it and to develop a deep comprehension of its advan-
tages and shortcomings.

When I started Python, I built my own Python libraries and applica-
tions on a “garage project” scale. Things changed once I started working 
with hundreds of developers on software that thousands of users rely on. For 
example, the OpenStack platform—a project I contribute to—represents 
over 9 million lines of Python code, which collectively needs to be concise, 

http://www.python.org/


2   Introduction

efficient, and scalable to the needs of whatever cloud computing applica-
tion its users require. When you have a project of this size, things like test-
ing and documentation absolutely require automation, or else they won’t 
get done at all.

I thought I knew a lot about Python before working on projects of this 
scale—a scale I could hardly imagine when I started out—but I’ve learned 
a lot more. I’ve also had the opportunity to meet some of the best Python 
hackers in the industry and learn from them. They’ve taught me everything 
from general architecture and design principles to various helpful tips and 
tricks. Through this book, I hope to share the most important things I’ve 
learned so that you can build better Python programs—and build them 
more efficiently, too!

The first version of this book, The Hacker’s Guide to Python, came out 
in 2014. Now Serious Python is the fourth edition, with updated and entirely 
new contents. I hope you enjoy it!

Who Should Read This Book and Why
This book is intended for Python coders and developers who want to take 
their Python skills to the next level. 

In it, you’ll find methods and advice that will help you get the most 
out of Python and build future-proof programs. If you’re already working 
on a project, you’ll be able to apply the techniques discussed right away to 
improve your current code. If you’re starting your first project, you’ll be 
able to create a blueprint with the best practice.

I’ll introduce you to some Python internals to give you a better under-
standing of how to write efficient code. You will gain a greater insight into 
the inner workings of the language that will help you understand problems 
or inefficiencies. 

The book also provides applicable battle-tested solutions to problems 
such as testing, porting, and scaling Python code, applications, and libraries. 
This will help you avoid making the mistakes that others have made and dis-
cover strategies that will help you maintain your software in the long run.

About This Book
This book is not necessarily designed to be read from front to back. You 
should feel free to skip to sections that interest you or are relevant to your 
work. Throughout the book, you’ll find a wide range of advice and practical 
tips. Here’s a quick breakdown of what each chapter contains.

Chapter 1 provides guidance about what to consider before you under-
take a project, with advice on structuring your project, numbering versions, 
setting up automated error checking, and more. At the end there’s an inter-
view with Joshua Harlow.

Chapter 2 introduces Python modules, libraries, and frameworks and 
talks a little about how they work under the hood. You’ll find guidance on 



Introduction   3

using the sys module, getting more from the pip package manager, choos-
ing the best framework for you, and using standard and external libraries. 
There’s also an interview with Doug Hellmann.

Chapter 3 gives advice on documenting your projects and managing 
your APIs as your project evolves even after publication. You’ll get specific 
guidance on using Sphinx to automate certain documentation tasks. Here 
you’ll find an interview with Christophe de Vienne.

Chapter 4 covers the age-old issue of time zones and how best to handle 
them in your programs using datetime objects and tzinfo objects. 

Chapter 5 helps you get your software to users with guidance on distri-
bution. You’ll learn about packaging, distributions standards, the distutils 
and setuptools libraries, and how to easily discover dynamic features in a 
package using entry points. Nick Coghlan is interviewed.

Chapter 6 advises you on unit testing with best-practice tips and specific 
tutorials on automating unit tests with pytest. You’ll also look at using virtual 
environments to increase the isolation of your tests. The interview is with 
Robert Collins.

Chapter 7 digs into methods and decorators. This is a look at using 
Python for functional programming, with advice on how and when to use 
decorators and how to create decorators for decorators. We’ll also dig into 
static, class, and abstract methods and how to mix the three for a more 
robust program.

Chapter 8 shows you more functional programming tricks you can 
implement in Python. This chapter discusses generators, list comprehen-
sions, functional functions and common tools for implementing them, and 
the useful functools library. 

Chapter 9 peeks under the hood of the language itself and discusses 
the abstract syntax tree (AST) that is the inner structure of Python. We’ll 
also look at extending flake8 to work with the AST to introduce more 
sophisticated automatic checks into your programs. The chapter concludes 
with an interview with Paul Tagliamonte.

Chapter 10 is a guide to optimizing performance by using appropriate 
data structures, defining functions efficiently, and applying dynamic per-
formance analysis to identify bottlenecks in your code. We’ll also touch on 
memoization and reducing waste in data copies. You’ll find an interview with 
Victor Stinner.

Chapter 11 tackles the difficult subject of multithreading, including 
how and when to use multithreading as opposed to multiprocessing and 
whether to use event-oriented or service-oriented architecture to create 
scalable programs.

Chapter 12 covers relational databases. We’ll take a look at how they 
work and how to use PostgreSQL to effectively manage and stream data. 
Dimitri Fontaine is interviewed.

Finally, Chapter 13 offers sound advice on a range of topics: making 
your code compatible with both Python 2 and 3, creating functional Lisp-
like code, using context managers, and reducing repetition with the attr 
library. 





1
S t a r t i n g  Y o u r  P r o j e c t

In this first chapter, we’ll look at a few 
aspects of starting a project and what 

you should think about before you begin, 
such as which Python version to use, how to 

structure your modules, how to effectively number 
software versions, and how to ensure best coding prac-
tices with automatic error checking. 

Versions of Python
Before beginning a project, you’ll need to decide what version(s) of Python 
it will support. This is not as simple a decision as it may seem. 

It’s no secret that Python supports several versions at the same time. 
Each minor version of the interpreter gets bug-fix support for 18 months 
and security support for 5 years. For example, Python 3.7, released on 



6   Chapter 1

June 27, 2018, will be supported until Python 3.8 is released, which 
should be around October 2019. Around December 2019, a last bug-fix 
release of Python 3.7 will occur, and everyone will be expected to switch to 
Python 3.8. Each new version of Python introduces new features and depre-
cates old ones. Figure 1-1 illustrates this timeline.

Time

Py
tho

n 3
.7

Py
tho

n 3
.7.

1

Py
tho

n 3
.7.

w

Py
tho

n 3
.8 

alp
ha

1

Py
tho

n 3
.7.

x

Py
tho

n 3
.8 

alp
ha

2

Py
tho

n 3
.8 

be
ta1

Py
tho

n 3
.8 

be
ta2

Py
tho

n 3
.7.

y

Py
tho

n 3
.7.

z

Py
tho

n 3
.8

Jun
 20

18

Jan
 20

19

May
 20

19

Oct 
20

19

Dec
 20

19

Figure 1-1: Python release timeline

On top of that, we should take into consideration the Python 2 versus 
Python 3 problem. People working with (very) old platforms may still require 
Python 2 support because Python 3 has not been made available on those 
platforms, but the rule of thumb is to forget Python 2 if you can.

Here is a quick way to figure out which version you need:

•	 Versions 2.6 and older are now obsolete, so I do not recommend you 
worry about supporting them at all. If you do intend to support these 
older versions for whatever reason, be warned that you’ll have a hard 
time ensuring that your program supports Python 3.x as well. Having 
said that, you might still run into Python 2.6 on some older systems—if 
that’s the case, sorry!

•	 Version 2.7 is and will remain the last version of Python 2.x. Every sys-
tem is basically running or able to run Python 3 one way or the other 
nowadays, so unless you’re doing archeology, you shouldn’t need to 
worry about supporting Python 2.7 in new programs. Python 2.7 will 
cease to be supported after the year 2020, so the last thing you want 
to do is build a new software based on it.

•	 Version 3.7 is the most recent version of the Python 3 branch as of this 
writing, and that’s the one that you should target. However, if your 
operating system ships version 3.6 (most operating systems, except 
Windows, ship with 3.6 or later), make sure your application will also 
work with 3.6.

Techniques for writing programs that support both Python 2.7 and 3.x 
will be discussed in Chapter 13.

Finally, note that this book has been written with Python 3 in mind.



Starting Your Project   7

Laying Out Your Project 
Starting a new project is always a bit of a puzzle. You can’t be sure how your 
project will be structured, so you might not know how to organize your files. 
However, once you have a proper understanding of best practices, you’ll 
understand which basic structure to start with. Here I’ll give some tips on 
dos and don’ts for laying out your project.

What to Do
First, consider your project structure, which should be fairly simple. Use 
packages and hierarchy wisely: a deep hierarchy can be a nightmare to 
navigate, while a flat hierarchy tends to become bloated.

Then, avoid making the common mistake of storing unit tests out-
side the package directory. These tests should definitely be included in a 
subpackage of your software so that they aren’t automatically installed as 
a tests top-level module by setuptools (or some other packaging library) 
by accident. By placing them in a subpackage, you ensure they can be 
installed and eventually used by other packages so users can build their 
own unit tests.

Figure 1-2 illustrates what a standard file hierarchy should look like.

foobar

foobar

setup.py

setup.cfg

README.rst

image.png

docs

conf.py

quickstart.rst

index.rst

__init__.py

cli.py

storage.py

tests

data

__init__.py

test_storage.py

test_cli.py

Figure 1-2: Standard package directory

The standard name for a Python installation script is setup.py. It comes 
with its companion setup.cfg, which should contain the installation script 
configuration details. When run, setup.py will install your package using the 
Python distribution utilities.

You can also provide important information to users in README.rst (or 
README.txt, or whatever filename suits your fancy). Finally, the docs direc-
tory should contain the package’s documentation in reStructuredText format, 
which will be consumed by Sphinx (see Chapter 3).



8   Chapter 1

Packages will often have to provide extra data for the software to 
use, such as images, shell scripts, and so forth. Unfortunately, there’s no 
universally accepted standard for where these files should be stored, so 
you should just put them wherever makes the most sense for your project 
depending on their functions. For example, web application templates 
could go in a templates directory in your package root directory.

The following top-level directories also frequently appear:

•	 etc for sample configuration files

•	 tools for shell scripts or related tools

•	 bin for binary scripts you’ve written that will be installed by setup.py

What Not to Do 
There is a particular design issue that I often encounter in project struc-
tures that have not been fully thought out: some developers will create 
files or modules based on the type of code they will store. For example, 
they might create functions.py or exceptions.py files. This is a terrible approach 
and doesn’t help any developer when navigating the code. When reading a 
codebase, the developer expects a functional area of a program to be con-
fined in a particular file. The code organization doesn’t benefit from this 
approach, which forces readers to jump between files for no good reason.

Organize your code based on features, not on types.
It is also a bad idea to create a module directory that contains only an 

__init__.py file, because it’s unnecessary nesting. For example, you shouldn’t 
create a directory named hooks with a single file named hooks/__init__.py 
in it, where hooks.py would have been enough. If you create a directory, it 
should contain several other Python files that belong to the category the 
directory represents. Building a deep hierarchy unnecessarily is confusing.

You should also be very careful about the code that you put in the 
__init__.py file. This file will be called and executed the first time that a 
module contained in the directory is loaded. Placing the wrong things in 
your __init__.py can have unwanted side effects. In fact, __init__.py files 
should be empty most of the time, unless you know what you’re doing. 
Don’t try to remove __init__.py files altogether though, or you won’t be 
able to import your Python module at all: Python requires an __init__.py 
file to be present for the directory to be considered a submodule.

Version Numbering
Software versions need to be stamped so users know which is the more 
recent version. For every project, users must be able to organize the time-
line of the evolving code.

There is an infinite number of ways to organize your version numbers. 
However, PEP 440 introduces a version format that every Python package, 
and ideally every application, should follow so that other programs and 
packages can easily and reliably identify which versions of your package 
they require.

http://www.python.org/dev/peps/pep-0440/


Starting Your Project   9

PEP 440 defines the following regular expression format for version 
numbering:

N[.N]+[{a|b|c|rc}N][.postN][.devN]

This allows for standard numbering such as 1.2 or 1.2.3. There are a 
few further details to note:

•	 Version 1.2 is equivalent to 1.2.0, 1.3.4 is equivalent to 1.3.4.0, and so 
forth.

•	 Versions matching N[.N]+ are considered final releases.

•	 Final components can also use the following format:

• N[.N]+aN (for example, 1.2a1) denotes an alpha release; this is a 
version that might be unstable and missing features.

• N[.N]+bN (for example, 2.3.1b2) denotes a beta release, a version that 
might be feature complete but still buggy.

• N[.N]+cN or N[.N]+rcN (for example, 0.4rc1) denotes a (release) can-
didate. This is a version that might be released as the final product 
unless significant bugs emerge. The rc and c suffixes have the same 
meaning, but if both are used, rc releases are considered newer 
than c releases.

•	 The following suffixes can also be used: 

• The suffix .postN (for example, 1.4.post2) indicates a post release. 
Post releases are typically used to address minor errors in the pub-
lication process, such as mistakes in release notes. You shouldn’t 
use the .postN suffix when releasing a bug-fix version; instead, 
increment the minor version number.

• The suffix.devN (for example, 2.3.4.dev3) indicates a developmental 
release. It indicates a prerelease of the version that it qualifies: for 
example, 2.3.4.dev3 indicates the third developmental version of the 
2.3.4 release, prior to any alpha, beta, candidate, or final release. 
This suffix is discouraged because it is harder for humans to parse.

This scheme should be sufficient for most common use cases.

N O T E  You might have heard of Semantic Versioning, which provides its own guidelines 
for version numbering. This specification partially overlaps with PEP 440, but unfor-
tunately, they’re not entirely compatible. For example, Semantic Versioning’s recom-
mendation for prerelease versioning uses a scheme such as 1.0.0-alpha+001 that is 
not compliant with PEP 440.



10   Chapter 1

Many distributed version control system (DVCS) platforms, such as Git and 
Mercurial, are able to generate version numbers using an identifying hash 
(for Git, refer to git describe). Unfortunately, this system isn’t compatible 
with the scheme defined by PEP 440: for one thing, identifying hashes 
aren’t orderable.

Coding Style and Automated Checks
Coding style is a touchy subject, but one we should talk about before we 
dive further into Python. Unlike many programming languages, Python 
uses indentation to define blocks. While this offers a simple solution to the 
age-old question “Where should I put my braces?” it introduces a new ques-
tion: “How should I indent?”

That was one of the first questions raised in the community, so the 
Python folks, in their vast wisdom, came up with the PEP 8: Style Guide for 
Python Code (https://www.python.org/dev/peps/pep-0008/).

This document defines the standard style for writing Python code. The 
list of guidelines boils down to:

•	 Use four spaces per indentation level.

•	 Limit all lines to a maximum of 79 characters.

•	 Separate top-level function and class definitions with two blank lines.

•	 Encode files using ASCII or UTF-8.

•	 Use one module import per import statement and per line. Place import 
statements at the top of the file, after comments and docstrings, grouped 
first by standard, then by third party, and finally by local library imports.

•	 Do not use extraneous whitespaces between parentheses, square 
brackets, or braces or before commas.

•	 Write class names in camel case (e.g., CamelCase), suffix exceptions with 
Error (if applicable), and name functions in lowercase with words and 
underscores (e.g., separated_by_underscores). Use a leading underscore 
for _private attributes or methods.

These guidelines really aren’t hard to follow, and they make a lot of 
sense. Most Python programmers have no trouble sticking to them as they 
write code.

However, errare humanum est, and it’s still a pain to look through your 
code to make sure it fits the PEP 8 guidelines. Luckily, there’s a pep8 tool 
(found at https://pypi.org/project/pep8/) that can automatically check any 
Python file you send its way. Install pep8 with pip, and then you can use it 
on a file like so: 

$ pep8 hello.py
hello.py:4:1: E302 expected 2 blank lines, found 1

http://www.python.org/dev/peps/pep-0008/


Starting Your Project   11

$ echo $?
1

Here I use pep8 on my file hello.py, and the output indicates which lines 
and columns do not conform to PEP 8 and reports each issue with a code—
here it’s line 4 and column 1. Violations of MUST statements in the speci-
fication are reported as errors, and their error codes start with an E. Minor 
issues are reported as warnings, and their error codes start with a W. The 
three-digit code following that first letter indicates the exact kind of error 
or warning.

The hundreds digit tells you the general category of an error code: 
for example, errors starting with E2 indicate issues with whitespace, errors 
starting with E3 indicate issues with blank lines, and warnings starting with 
W6 indicate deprecated features being used. These codes are all listed in 
the pep8 readthedocs documentation (https://pep8.readthedocs.io/).

Tools to Catch Style Errors
The community still debates whether validating against PEP 8 code, which 
is not part of the Standard Library, is good practice. My advice is to con-
sider running a PEP 8 validation tool against your source code on a regular 
basis. You can do this easily by integrating it into your continuous integra-
tion system. While this approach may seem a bit extreme, it’s a good way to 
ensure that you continue to respect the PEP 8 guidelines in the long term. 
We’ll discuss in “Using virtualenv with tox” on page 92 how you can inte-
grate pep8 with tox to automate these checks.

Most open source projects enforce PEP 8 conformance through auto-
matic checks. Using these automatic checks from the very beginning of the 
project might frustrate newcomers, but it also ensures that the codebase 
always looks the same in every part of the project. This is very important 
for a project of any size where there are multiple developers with differing 
opinions on, for example, whitespace ordering. You know what I mean.

It’s also possible to set your code to ignore certain kinds of errors and 
warnings by using the --ignore option, like so:

$ pep8 --ignore=E3 hello.py
$ echo $?
0

This will ignore any code E3 errors inside my hello.py file. The --ignore 
option allows you to effectively ignore parts of the PEP 8 specification that 
you don’t want to follow. If you’re running pep8 on an existing codebase, it 
also allows you to ignore certain kinds of problems so you can focus on fix-
ing issues one category at a time.

n o t e  If you write C code for Python (e.g., modules), the PEP 7 standard describes the coding 
style that you should follow.

http://www.python.org/dev/peps/pep-0007/


12   Chapter 1

Tools to Catch Coding Errors
Python also has tools that check for actual coding errors rather than style 
errors. Here are some notable examples:

•	 Pyflakes (https://launchpad.net/pyflakes/): Extendable via plugins.

•	 Pylint (https://pypi.org/project/pylint/): Checks PEP 8 conformance while 
performing code error checks by default; can be extended via plugins.

These tools all make use of static analysis—that is, they parse the code 
and analyze it rather than running it outright.

If you choose to use Pyflakes, note that it doesn’t check PEP 8 confor-
mance on its own, so you’d need the second pep8 tool to cover both.

To simplify things, Python has a project named flake8 (https://pypi.org/
project/flake8/) that combines pyflakes and pep8 into a single command. It 
also adds some new fancy features: for example, it can skip checks on lines 
containing # noqa and is extensible via plugins.

There are a large number of plugins available for flake8 that you can use 
out of the box. For example, installing flake8-import-order (with pip install 
flake8-import-order) will extend flake8 so that it also checks whether your 
import statements are sorted alphabetically in your source code. Yes, some 
projects want that.

In most open source projects, flake8 is heavily used for code style 
verification. Some large open source projects have even written their own 
plugins for flake8, adding checks for errors such as odd usage of except, 
Python 2/3 portability issues, import style, dangerous string formatting, 
possible localization issues, and more.

If you’re starting a new project, I strongly recommend that you use 
one of these tools for automatic checking of your code quality and style. 
If you already have a codebase that didn’t implement automatic code 
checking, a good approach is to run your tool of choice with most of the 
warnings disabled and fix issues one category at a time.

Though none of these tools may be a perfect fit for your project or your 
preferences, flake8 is a good way to improve the quality of your code and 
make it more durable. 

n o t e  Many text editors, including the famous GNU Emacs and vim, have plugins avail-
able (such as Flycheck) that can run tools such as pep8 or flake8 directly in your code 
buffer, interactively highlighting any part of your code that isn’t PEP 8 compliant. 
This is a handy way to fix most style errors as you write your code.

We’ll talk about extending this toolset in Chapter 9 with our own plugin 
to verify correct method declaration.

https://pypi.python.org/pypi/flake8
http://www.gnu.org/software/emacs/
http://www.vim.org/
https://launchpad.net/pyflakes/
https://pypi.org/project/pylint/
janelle
Sticky Note
Marked set by janelle



Starting Your Project   13

Joshua Harlow on Python
Joshua Harlow is a Python developer. He was one of the technical leads on 
the OpenStack team at Yahoo! between 2012 and 2016 and now works at 
GoDaddy. Josh is the author of several Python libraries such as Taskflow, 
automaton, and Zake.

What got you into using Python? 
I started programming in Python 2.3 or 2.4 back in about 2004 dur-
ing an internship at IBM near Poughkeepsie, New York (most of my 
relatives and family are from upstate NY, shout out to them!). I forget 
exactly what I was doing there, but it involved wxPython and some 
Python code that they were working on to automate some system. 

After that internship I returned to school, went on to graduate 
school at the Rochester Institute of Technology, and ended up working 
at Yahoo!.

I eventually ended up in the CTO team, where I and a few others 
were tasked with figuring out which open source cloud platform to use. 
We landed on OpenStack, which is written almost entirely in Python. 

What do you love and hate about the Python language?
Some of the things I love (not a comprehensive listing):

•	 Its simplicity—Python is really easy for beginners to engage with and 
for experienced developers to stay engaged with.

•	 Style checking—reading code you wrote later on is a big part of develop-
ing software and having consistency that can be enforced by tools such 
as flake8, pep8, and Pylint really helps.

•	 The ability to pick and choose programming styles and mix them up as 
you see fit. 

Some of the things I dislike (not a comprehensive listing):

•	 The somewhat painful Python 2 to 3 transition (version 3.6 has paved 
over most of the issues here).

•	 Lambdas are too simplistic and should be made more powerful.

•	 The lack of a decent package installer—I feel pip needs some work, like 
developing a real dependency resolver.

•	 The global interpreter lock (GIL) and the need for it. It makes me sad 
. . . [more on the GIL in Chapter 11].

•	 The lack of native support for multithreading—currently you need the 
addition of an explicit asyncio model.

•	 The fracturing of the Python community; this is mainly around the 
split between CPython and PyPy (and other variants). 

http://www.yahoo.com/
http://openstack.org/
http://wiki.openstack.org/wiki/Oslo
https://pypi.python.org/pypi/six


14   Chapter 1

You work on debtcollector, a Python module for managing deprecation 
warnings. How is the process of starting a new library?

The simplicity mentioned above makes it really easy to get a new library 
going and to publish it so others can use it. Since that code came out of 
one of the other libraries that I work on (taskflow1) it was relatively easy 
to transplant and extend that code without having to worry about the 
API being badly designed. I am very glad others (inside the OpenStack 
community or outside of it) have found a need/use for it, and I hope that 
library grows to accommodate more styles of deprecation patterns that 
other libraries (and applications?) find useful.

What is Python missing, in your opinion?
Python could perform better under just-in-time (JIT) compilation. Most 
newer languages being created (such as Rust, Node.js using the Chrome 
V8 JavaScript engine, and others) have many of Python’s capabilities but 
are also JIT compiled. It would be really be great if the default CPython 
could also be JIT compiled so that Python could compete with these 
newer languages on performance. 

Python also really needs a strong set of concurrency patterns; not 
just the low level asyncio and threading styles of patterns, but higher-
level concepts that help make applications that work performantly 
at larger scale. The Python library goless does port over some of the 
concepts from Go, which does provide a built-in concurrency model. I 
believe these higher-level patterns need to be available as first-class pat-
terns that are built in to the Standard Library and maintained so that 
developers can use them where they see fit. Without these, I don’t see 
how Python can compete with other languages that do provide them.

Until next time, keep coding and be happy!

1. Contributors to this project are always welcome. Feel free to jump on IRC and get involved 
at irc://chat.freenode.net/openstack-state-management.

irc://chat.freenode.net/openstack-state-management


2
M o d u l e s ,  l i b r a r i e s ,  

a n d  F r a M e w o r k s

Modules are an essential part of what 
makes Python extensible. Without them, 

Python would just be a language built 
around a monolithic interpreter; it wouldn’t 

flourish within a giant ecosystem that allows develop-
ers to build applications quickly and simply by combin-
ing extensions. In this chapter, I’ll introduce you to 
some of the features that make Python modules great, 
from the built-in modules you need to know to exter-
nally managed frameworks.



16   Chapter 2

The Import System
To use modules and libraries in your programs, you have to import them 
using the import keyword. As an example, Listing 2-1 imports the all-
important Zen of Python guidelines.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Listing 2-1: The Zen of Python

The import system is quite complex, and I’m assuming you already 
know the basics, so here I’ll show you some of the internals of this system, 
including how the sys module works, how to change or add import paths, 
and how to use custom importers.

First, you need to know that the import keyword is actually a wrapper 
around a function named __import__. Here is a familiar way of importing a 
module:

>>> import itertools
>>> itertools
<module 'itertools' from '/usr/.../>

This is precisely equivalent to this method:

>>> itertools = __import__("itertools")
>>> itertools
<module 'itertools' from '/usr/.../>



Modules, Libraries, and Frameworks    17

You can also imitate the as keyword of import, as these two equivalent 
ways of importing show:

>>> import itertools as it
>>> it
<module 'itertools' from '/usr/.../>

And here’s the second example:

>>> it = __import__("itertools")
>>> it
<module 'itertools' from '/usr/.../>

While import is a keyword in Python, internally it’s a simple function 
that’s accessible through the __import__ name. The __import__ function is 
extremely useful to know, as in some (corner) cases, you might want to 
import a module whose name is unknown beforehand, like so:

>>> random = __import__("RANDOM".lower())
>>> random
<module 'random' from '/usr/.../>

Don’t forget that modules, once imported, are essentially objects whose 
attributes (classes, functions, variables, and so on) are objects.

The sys Module
The sys module provides access to variables and functions related to Python 
itself and the operating system it is running on. This module also contains 
a lot of information about Python’s import system. 

First of all, you can retrieve the list of modules currently imported 
using the sys.modules variable. The sys.modules variable is a dictionary 
whose key is the module name you want to inspect and whose returned 
value is the module object. For example, once the os module is imported, 
we can retrieve it by entering:

>>> import sys
>>> import os
>>> sys.modules['os']
<module 'os' from '/usr/lib/python2.7/os.pyc'>

The sys.modules variable is a standard Python dictionary that contains 
all loaded modules. That means that calling sys.modules.keys(), for example, 
will return the complete list of the names of loaded modules.

You can also retrieve the list of modules that are built in by using the 
sys.builtin_module_names variable. The built-in modules compiled to your 
interpreter can vary depending on what compilation options were passed to 
the Python build system.



18   Chapter 2

Import Paths
When importing modules, Python relies on a list of paths to know where 
to look for the module. This list is stored in the sys.path variable. To check 
which paths your interpreter will search for modules, just enter sys.path. 

You can change this list, adding or removing paths as necessary, or 
even modify the PYTHONPATH environment variable to add paths without writ-
ing Python code at all. Adding paths to the sys.path variable can be useful if 
you want to install Python modules to nonstandard locations, such as a test 
environment. In normal operations, however, it should not be necessary to 
change the path variable. The following approaches are almost equivalent—
almost because the path will not be placed at the same level in the list; this 
difference may not matter, depending on your use case:

>>> import sys
>>> sys.path.append('/foo/bar')

This would be (almost) the same as:

$ PYTHONPATH=/foo/bar python
>>> import sys
>>> '/foo/bar' in sys.path
True

It’s important to note that the list will be iterated over to find the 
requested module, so the order of the paths in sys.path is important. It’s 
useful to put the path most likely to contain the modules you are importing 
early in the list to speed up search time. Doing so also ensures that if two 
modules with the same name are available, the first match will be picked.

This last property is especially important because one common 
mistake is to shadow Python built-in modules with your own. Your cur-
rent directory is searched before the Python Standard Library directory. 
That means that if you decide to name one of your scripts random.py and 
then try using import random, the file from your current directory will be 
imported rather than the Python module.

Custom Importers
You can also extend the import mechanism using custom importers. This 
is the technique that the Lisp-Python dialect Hy uses to teach Python how 
to import files other than standard .py or .pyc files. (Hy is a Lisp implementa-
tion on top of Python, discussed later in the section “A Quick Introduction 
to Hy” on page 145.)

The import hook mechanism, as this technique is called, is defined by 
PEP 302. It allows you to extend the standard import mechanism, which in 
turn allows you to modify how Python imports modules and build your own 
system of import. For example, you could write an extension that imports 
modules from a database over the network or that does some sanity check-
ing before importing any module.

http://www.python.org/dev/peps/pep-0302/


Modules, Libraries, and Frameworks    19

Python offers two different but related ways to broaden the import 
system: the meta path finders for use with sys.meta_path and the path entry 
finders for use with sys.path_hooks.

Meta Path Finders
The meta path finder is an object that will allow you to load custom objects 
as well as standard .py files. A meta path finder object must expose a find 
_module(fullname, path=None) method that returns a loader object. The loader 
object must also have a load_module(fullname) method responsible for loading 
the module from a source file.

To illustrate, Listing 2-2 shows how Hy uses a custom meta path finder to 
enable Python to import source files ending with .hy instead of .py.

class MetaImporter(object):
    def find_on_path(self, fullname):
        fls = ["%s/__init__.hy", "%s.hy"]
        dirpath = "/".join(fullname.split("."))

        for pth in sys.path:
            pth = os.path.abspath(pth)
            for fp in fls:
                composed_path = fp % ("%s/%s" % (pth, dirpath))
                if os.path.exists(composed_path):
                    return composed_path

    def find_module(self, fullname, path=None):
        path = self.find_on_path(fullname)
        if path:
            return MetaLoader(path)

sys.meta_path.append(MetaImporter())

Listing 2-2: A Hy module importer

Once Python has determined that the path is valid and that it points to 
a module, a MetaLoader object is returned, as shown in Listing 2-3.

class MetaLoader(object):
    def __init__(self, path):
        self.path = path

    def is_package(self, fullname):
        dirpath = "/".join(fullname.split("."))
        for pth in sys.path:
            pth = os.path.abspath(pth)
            composed_path = "%s/%s/__init__.hy" % (pth, dirpath)
            if os.path.exists(composed_path):
                return True
        return False

    def load_module(self, fullname):
        if fullname in sys.modules:



20   Chapter 2

            return sys.modules[fullname]

        if not self.path:
            return

        sys.modules[fullname] = None
      mod = import_file_to_module(fullname, self.path) 

        ispkg = self.is_package(fullname)

        mod.__file__ = self.path
        mod.__loader__ = self
        mod.__name__ = fullname

        if ispkg:
            mod.__path__ = []
            mod.__package__ = fullname
        else: 
            mod.__package__ = fullname.rpartition('.')[0]

        sys.modules[fullname] = mod
        return mod

Listing 2-3: A Hy module loader object

At , import_file_to_module reads a .hy source file, compiles it to Python 
code, and returns a Python module object. 

This loader is pretty straightforward: once the .hy file is found, it’s 
passed to this loader, which compiles the file if necessary, registers it, sets 
some attributes, and then returns it to the Python interpreter.

The uprefix module is another good example of this feature in action. 
Python 3.0 through 3.2 didn’t support the u prefix for denoting Unicode 
strings that was featured in Python 2; the uprefix module ensures compati-
bility between Python versions 2 and 3 by removing the u prefix from strings 
before compilation.

Useful Standard Libraries
Python comes with a huge standard library packed with tools and features for 
almost any purpose you can think of. Newcomers to Python who are used to 
having to write their own functions for basic tasks are often shocked to find 
that the language itself ships with so much functionality built in and ready 
for use.

Whenever you’re tempted to write your own function to handle a simple 
task, first stop and look through the standard library. In fact, skim through 
the whole thing at least once before you begin working with Python so that 
next time you need a function, you have an idea of whether it already exists 
in the standard library.

We’ll talk about some of these modules, such as functools and itertools, 
in later chapters, but here are a few of the standard modules that you’ll defi-
nitely find useful:

https://pypi.python.org/pypi/uprefix


Modules, Libraries, and Frameworks    21

•	 atexit allows you to register functions for your program to call when it 
exits. 

•	 argparse provides functions for parsing command line arguments. 

•	 bisect provides bisection algorithms for sorting lists (see Chapter 10). 

•	 calendar provides a number of date-related functions. 

•	 codecs provides functions for encoding and decoding data. 

•	 collections provides a variety of useful data structures. 

•	 copy provides functions for copying data. 

•	 csv provides functions for reading and writing CSV files. 

•	 datetime provides classes for handling dates and times. 

•	 fnmatch provides functions for matching Unix-style filename patterns. 

•	 concurrent provides asynchronous computation (native in Python 3, 
available for Python 2 via PyPI). 

•	 glob provides functions for matching Unix-style path patterns. 

•	 io provides functions for handling I/O streams. In Python 3, it also 
contains StringIO (inside the module of the same name in Python 2), 
which allows you to treat strings as files. 

•	 json provides functions for reading and writing data in JSON format. 

•	 logging provides access to Python’s own built-in logging functionality. 

•	 multiprocessing allows you to run multiple subprocesses from your appli-
cation, while providing an API that makes them look like threads. 

•	 operator provides functions implementing the basic Python operators, 
which you can use instead of having to write your own lambda expres-
sions (see Chapter 10). 

•	 os provides access to basic OS functions. 

•	 random provides functions for generating pseudorandom numbers. 

•	 re provides regular expression functionality. 

•	 sched provides an event scheduler without using multithreading. 

•	 select provides access to the select() and poll() functions for creating 
event loops. 

•	 shutil provides access to high-level file functions. 

•	 signal provides functions for handling POSIX signals. 

•	 tempfile provides functions for creating temporary files and directories. 

•	 threading provides access to high-level threading functionality. 

•	 urllib (and urllib2 and urlparse in Python 2.x) provides functions for 
handling and parsing URLs.  

•	 uuid allows you to generate Universally Unique Identifiers (UUIDs). 



22   Chapter 2

Use this list as a quick reference for what these useful libraries modules 
do. If you can memorize even part of this list, all the better. The less time you 
have to spend looking up library modules, the more time you can spend writ-
ing the code you actually need.

Most of the standard library is written in Python, so there’s nothing 
stopping you from looking at the source code of the modules and functions. 
When in doubt, crack open the code and see what it does for yourself. Even if 
the documentation has everything you need to know, there’s always a chance 
you could learn something useful.

External Libraries
Python’s “batteries included” philosophy is that, once you have Python 
installed, you should have everything you need to build whatever you 
want. This is to prevent the programming equivalent of unwrapping 
an awesome gift only to find out that whoever gave it to you forgot to 
buy batteries for it.

Unfortunately, there’s no way the people behind Python can predict 
everything you might want to make. And even if they could, most people 
wouldn’t want to deal with a multigigabyte download, especially if they just 
wanted to write a quick script for renaming files. So even with its extensive 
functionality, the Python Standard Library doesn’t cover everything. Luckily, 
members of the Python community have created external libraries.

The Python Standard Library is safe, well-charted territory: its modules 
are heavily documented, and enough people use it on a regular basis that 
you can feel assured it won’t break messily when you give it a try—and in 
the unlikely event that it does break, you can be confident someone will fix 
it in short order. External libraries, on the other hand, are the parts of the 
map labeled “here there be dragons”: documentation may be sparse, func-
tionality may be buggy, and updates may be sporadic or even nonexistent. 
Any serious project will likely need functionality that only external libraries 
can provide, but you need to be mindful of the risks involved in using them.

Here’s a tale of external library dangers from the trenches. OpenStack 
uses SQLAlchemy, a database toolkit for Python. If you’re familiar with 
SQL, you know that database schemas can change over time, so OpenStack 
also made use of sqlalchemy-migrate to handle schema migration needs. And 
it worked . . . until it didn’t. Bugs started piling up, and nothing was get-
ting done about them. At this time, OpenStack was also interested in sup-
porting Python 3, but there was no sign that sqlalchemy-migrate was moving 
toward Python 3 support. It was clear by that point that sqlalchemy-migrate 
was effectively dead for our needs and we needed to switch to something 
else—our needs had outlived the capabilities of the external library. At 
the time of this writing, OpenStack projects are migrating toward using 
Alembic instead, a new SQL database migrations tool with Python 3 sup-
port. This is happening not without some effort, but fortunately without 
much pain.

http://www.sqlalchemy.org/
https://code.google.com/p/sqlalchemy-migrate/
https://pypi.python.org/pypi/alembic


Modules, Libraries, and Frameworks    23

The External Libraries Safety Checklist
All of this builds up to one important question: how can you be sure 
you won’t fall into this external libraries trap? Unfortunately, you can’t: 
programmers are people, too, and there’s no way you can know for sure 
whether a library that’s zealously maintained today will still be in good 
shape in a few months. However, using such libraries may be worth the 
risk; it’s just important to carefully assess your situation. At OpenStack, 
we use the following checklist when choosing whether to use an external 
library, and I encourage you to do the same.

Python 3 compatibility Even if you’re not targeting Python 3 right now, 
odds are good that you will somewhere down the line, so it’s a good idea 
to check that your chosen library is already Python 3–compatible and 
committed to staying that way. 

Active development GitHub and Ohloh usually provide enough infor-
mation to determine whether a given library is being actively developed 
by its maintainers. 

Active maintenance Even if a library is considered finished (that is, 
feature complete), the maintainers should be ensuring it remains bug-
free. Check the project’s tracking system to see how quickly the main-
tainers respond to bugs. 

Packaged with OS distributions If a library is packaged with major 
Linux distributions, that means other projects are depending on it—so 
if something goes wrong, you won’t be the only one complaining. It’s 
also a good idea to check this if you plan to release your software to 
the public: your code will be easier to distribute if its dependencies are 
already installed on the end user’s machine. 

API compatibility commitment Nothing’s worse than having your 
software suddenly break because a library it depends on has changed 
its entire API. You might want to check whether your chosen library has 
had anything like this happen in the past. 

License You need to make sure that the license is compatible with the 
software you’re planning to write and that it allows you to do whatever 
you intend to do with your code in terms of distribution, modification, 
and execution.

Applying this checklist to dependencies is also a good idea, though that 
could turn out to be a huge undertaking. As a compromise, if you know your 
application is going to depend heavily on a particular library, you should 
apply this checklist to each of that library’s dependencies.

Protecting Your Code with an API Wrapper
No matter what libraries you end up using, you need to treat them as useful 
devices that could potentially do some serious damage. For safety, libraries 
should be treated like any physical tool: kept in your tool shed, away from 
your fragile valuables but available when you actually need them.

http://github.com/
http://www.ohloh.net/


24   Chapter 2

No matter how useful an external library might be, be wary of letting 
it get its hooks into your actual source code. Otherwise, if something goes 
wrong and you need to switch libraries, you might have to rewrite huge 
swaths of your program. A better idea is to write your own API—a wrapper 
that encapsulates your external libraries and keeps them out of your source 
code. Your program never has to know what external libraries it’s using, 
only what functionality your API provides. Then, if you need to use a dif-
ferent library, all you have to change is your wrapper. As long as the new 
library provides the same functionality, you won’t have to touch the rest of 
your codebase at all. There might be exceptions, but probably not many; 
most libraries are designed to solve a tightly focused range of problems and 
can therefore be easily isolated.

Later in Chapter 5, we’ll also look at how you can use entry points to 
build driver systems that will allow you to treat parts of your projects as 
modules you can switch out at will.

Package Installation: Getting More from pip
The pip project offers a really simple way to handle package and external 
library installations. It is actively developed, well maintained, and included 
with Python starting at version 3.4. It can install or uninstall packages from 
the Python Packaging Index (PyPI), a tarball, or a Wheel archive (we’ll discuss 
these in Chapter 5). 

Its usage is simple:

$ pip install --user voluptuous
Downloading/unpacking voluptuous
  Downloading voluptuous-0.8.3.tar.gz
  Storing download in cache at ./.cache/pip/https%3A%2F%2Fpypi.python.org%2Fpa
ckages%2Fsource%2Fv%2Fvoluptuous%2Fvoluptuous-0.8.3.tar.gz
  Running setup.py egg_info for package voluptuous

Requirement already satisfied (use --upgrade to upgrade): distribute in /usr/
lib/python2.7/dist-packages (from voluptuous)
Installing collected packages: voluptuous
  Running setup.py install for voluptuous

Successfully installed voluptuous
Cleaning up...

By looking it up on the PyPI distribution index, where anyone can upload 
a package for distribution and installation by others, pip install can install 
any package.

You can also provide a --user option that makes pip install the package 
in your home directory. This avoids polluting your operating system direc-
tories with packages installed system-wide.

https://pypi.python.org/pypi


Modules, Libraries, and Frameworks    25

You can list the packages you already have installed using the pip freeze 
command, like so:

$ pip freeze
Babel==1.3
Jinja2==2.7.1
commando=0.3.4
--snip--

Uninstalling packages is also supported by pip, using the uninstall 
command:

$ pip uninstall pika-pool
Uninstalling pika-pool-0.1.3:
  /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/
DESCRIPTION.rst
  /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/INSTALLER
  /usr/local/lib/python2.7/site-packages/pika_pool-0.1.3.dist-info/METADATA
  
--snip--
Proceed (y/n)? y
  Successfully uninstalled pika-pool-0.1.3

One very valuable feature of pip is its ability to install a package with-
out copying the package’s file. The typical use case for this feature is when 
you’re actively working on a package and want to avoid the long and boring 
process of reinstalling it each time you need to test a change. This can be 
achieved by using the -e <directory> flag:

$ pip install -e .
Obtaining file:///Users/jd/Source/daiquiri
Installing collected packages: daiquiri
  Running setup.py develop for daiquiri
Successfully installed daiquiri

Here, pip does not copy the files from the local source directory but 
places a special file, called an egg-link, in your distribution path. For example:

$ cat /usr/local/lib/python2.7/site-packages/daiquiri.egg-link
/Users/jd/Source/daiquiri

The egg-link file contains the path to add to sys.path to look for packages. 
The result can be easily checked by running the following command:

$ python -c "import sys; print('/Users/jd/Source/daiquiri' in sys.path)"
True

Another useful pip tool is the -e option of pip install, helpful for 
deploying code from repositories of various version control systems: git, 



26   Chapter 2

Mercurial, Subversion, and even Bazaar are supported. For example, you 
can install any library directly from a git repository by passing its address as 
a URL after the -e option:

$ pip install -e git+https://github.com/jd/daiquiri.git\#egg=daiquiri
Obtaining daiquiri from git+https://github.com/jd/daiquiri.git#egg=daiquiri
  Cloning https://github.com/jd/daiquiri.git to ./src/daiquiri
Installing collected packages: daiquiri
  Running setup.py develop for daiquiri
Successfully installed daiquiri

For the installation to work correctly, you need to provide the package 
egg name by adding #egg= at the end of the URL. Then, pip just uses git 
clone to clone the repository inside a src/<eggname> and creates an egg-link 
file pointing to that same cloned directory.

This mechanism is extremely handy when depending on unreleased ver-
sions of libraries or when working in a continuous testing system. However, 
since there is no versioning behind it, the -e option can also be very nasty. 
You cannot know in advance that the next commit in this remote repository 
is not going to break everything.

Finally, all other installation tools are being deprecated in favor of pip, 
so you can confidently treat it as your one-stop shop for all your package 
management needs.

Using and Choosing Frameworks
Python has a variety of frameworks available for various kinds of Python 
applications: if you’re writing a web application, you could use Django, 
Pylons, TurboGears, Tornado, Zope, or Plone; if you’re looking for an 
event-driven framework, you could use Twisted or Circuits; and so on.

The main difference between frameworks and external libraries is 
that applications use frameworks by building on top of them: your code 
will extend the framework rather than vice versa. Unlike a library, which is 
basically an add-on you can bring in to give your code some extra oomph, 
a framework forms the chassis of your code: everything you do builds on 
that chassis in some way. This can be a double-edged sword. There are 
plenty of upsides to using frameworks, such as rapid prototyping and 
development, but there are also some noteworthy downsides, such as lock-
in. You need to take these considerations into account when you decide 
whether to use a framework.

The recommendations for what to check when choosing the right frame-
work for your Python application are largely the same as those described in 
“The External Libraries Safety Checklist” on page 23—which makes sense, 
as frameworks are distributed as bundles of Python libraries. Sometimes 
frameworks also include tools for creating, running, and deploying applica-
tions, but that doesn’t change the criteria you should apply. We’ve established 

https://www.djangoproject.com/
http://www.pylonsproject.org/
http://turbogears.org/
http://www.tornadoweb.org/
http://www.zope.org/
http://plone.org/
http://twistedmatrix.com/
https://bitbucket.org/prologic/circuits/


Modules, Libraries, and Frameworks    27

that replacing an external library after you’ve already written code that makes 
use of it is a pain, but replacing a framework is a thousand times worse, usu-
ally requiring a complete rewrite of your program from the ground up.

To give an example, the Twisted framework mentioned earlier still 
doesn’t have full Python 3 support: if you wrote a program using Twisted 
a few years back and wanted to update it to run on Python 3, you’d be out 
of luck. Either you’d have to rewrite your entire program to use a differ-
ent framework, or you’d have to wait until someone finally gets around to 
upgrading Twisted with full Python 3 support.

Some frameworks are lighter than others. For example, Django has its 
own built-in ORM functionality; Flask, on the other hand, has nothing of 
the sort. The less a framework tries to do for you, the fewer problems you’ll 
have with it in the future. However, each feature a framework lacks is another 
problem for you to solve, either by writing your own code or going through 
the hassle of handpicking another library to handle it. It’s your choice which 
scenario you’d rather deal with, but choose wisely: migrating away from a 
framework when things go sour can be a Herculean task, and even with all its 
other features, there’s nothing in Python that can help you with that.

Doug Hellmann, Python Core Developer, on Python Libraries
Doug Hellmann is a senior developer at DreamHost and a fellow contribu-
tor to the OpenStack project. He launched the website Python Module of 
the Week (http://www.pymotw.com/) and has written an excellent book called 
The Python Standard Library by Example. He is also a Python core developer. 
I’ve asked Doug a few questions about the Standard Library and designing 
libraries and applications around it.

When you start writing a Python application from scratch, what’s your 
first move? 

The steps for writing an application from scratch are similar to hacking 
an existing application, in the abstract, but the details change. 

When I change existing code, I start by figuring out how it works 
and where my changes would need to go. I may use some debugging 
techniques: adding logging or print statements, or using pdb, and run-
ning the app with test data to make sure I understand what it’s doing. I 
usually make the change and test it by hand, then add any automated 
tests before contributing a patch.

I take the same exploratory approach when I create a new applica-
tion—create some code and run it by hand, and then once I have the 
basic functionality working, I write tests to make sure I’ve covered all 
of the edge cases. Creating the tests may also lead to some refactoring to 
make the code easier to work with.

That was definitely the case with smiley [a tool for spying on your 
Python programs and recording their activities]. I started by experi-
menting with Python’s trace API, using some throwaway scripts, before 
building the real application. Originally, I planned to have one piece 
to instrument and collect data from another running application, and 

http://pymotw.com/
http://pymotw.com/
http://www.pymotw.com/
http://doughellmann.com/python-standard-library-by-example
http://doughellmann.com/python-standard-library-by-example
https://pypi.python.org/pypi/smiley
janelle
Sticky Note
Marked set by janelle



28   Chapter 2

another to collect the data sent over the network and save it. While add-
ing a couple of reporting features, I realized that the processing for 
replaying the collected data was almost identical to the processing for 
collecting it in the first place. I refactored a few classes and was able to 
create a base class for the data collection, database access, and report 
generator. Making those classes conform to the same API allowed me 
to easily create a version of the data collection app that wrote directly to 
the database instead of sending information over the network.

While designing an app, I think about how the user interface works, 
but for libraries, I focus on how a developer will use the API. It can also 
be easier to write the tests for programs that will use the new library 
first, then the library code. I usually create a series of example programs 
in the form of tests and then build the library to work that way.

I’ve also found that writing documentation for a library before writ-
ing any code helps me think through the features and workflows with-
out committing to the implementation details, and it lets me record 
the choices I made in the design so the reader understands not just how 
to use the library but the expectations I had while creating it. 

What’s the process for getting a module into the Python Standard Library?
The full process and guidelines for submitting a module into the stan-
dard library can be found in the Python Developer’s Guide at https://
docs.python.org/devguide/stdlibchanges.html.

Before a module can be added, the submitter needs to prove that 
it’s stable and widely useful. The module should provide something 
that is either hard to implement correctly on your own or so useful 
that many developers have created their own variations. The API 
should be clear, and any module dependencies should be inside the 
Standard Library only.

The first step would be to run the idea of introducing the module 
into the standard library by the community via the python-ideas list to 
informally gauge the level of interest. Assuming the response is posi-
tive, the next step is to create a Python Enhancement Proposal (PEP), 
which should include the motivation for adding the module and imple-
mentation details of how the transition will happen.

Because package management and discovery tools have become 
so reliable, especially pip and the PyPI, it may be more practical to 
maintain a new library outside of the Python Standard Library. A sepa-
rate release allows for more frequent updates with new features and bug 
fixes, which can be especially important for libraries addressing new 
technologies or APIs.

What are the top three modules from the Standard Library that you wish 
people knew more about?

One really useful tool from the Standard Library is the abc module. I 
use the abc module to define the APIs for dynamically loaded extensions 
as abstract base classes, to help extension authors understand which 

https://docs.python.org/devguide/stdlibchanges.html
https://docs.python.org/devguide/stdlibchanges.html


Modules, Libraries, and Frameworks    29

methods of the API are required and which are optional. Abstract base 
classes are built into some other OOP [object-oriented programming] 
languages, but I’ve found a lot of Python programmers don’t know we 
have them as well.

The binary search algorithm in the bisect module is a good example 
of a useful feature that’s often implemented incorrectly, which makes it 
a great fit for the Standard Library. I especially like the fact that it can 
search sparse lists where the search value may not be included in the data.

There are some useful data structures in the collections module 
that aren’t used as often as they could be. I like to use namedtuple for 
creating small, class-like data structures that need to hold data with-
out any associated logic. It’s very easy to convert from a namedtuple to a 
regular class if logic does need to be added later, since namedtuple sup-
ports accessing attributes by name. Another interesting data structure 
from the module is ChainMap, which makes a good stackable namespace. 
ChainMap can be used to create contexts for rendering templates or man-
aging configuration settings from different sources with clearly defined 
precedence.

A lot of projects, including OpenStack and external libraries, roll their 
own abstractions on top of the Standard Library, like for date/time 
handling, for example. In your opinion, should programmers stick to 
the Standard Library, roll their own functions, switch to some external 
library, or start sending patches to Python?

All of the above! I prefer to avoid reinventing the wheel, so I advocate 
strongly for contributing fixes and enhancements upstream to projects 
that can be used as dependencies. On the other hand, sometimes it 
makes sense to create another abstraction and maintain that code sepa-
rately, either within an application or as a new library.

The timeutils module, used in your example, is a fairly thin wrap-
per around Python’s datetime module. Most of the functions are short 
and simple, but creating a module with the most common operations 
ensures they’re handled consistently throughout all projects. Because 
a lot of the functions are application specific, in the sense that they 
enforce decisions about things like timestamp format strings or what 
“now” means, they are not good candidates for patches to Python’s 
library or to be released as a general purpose library and adopted by 
other projects.

In contrast, I have been working to move the API services in 
OpenStack away from the WSGI [Web Server Gateway Interface] frame-
work created in the early days of the project and onto a third-party web 
development framework. There are a lot of options for creating WSGI 
applications in Python, and while we may need to enhance one to make 
it completely suitable for OpenStack’s API servers, contributing those 
reusable changes upstream is preferable to maintaining a “private” 
framework.



30   Chapter 2

What would your advice be to developers hesitating between major Python 
versions? 

The number of third-party libraries supporting Python 3 has reached 
critical mass. It’s easier than ever to build new libraries and applica-
tions for Python 3, and thanks to the compatibility features added 
to 3.3, maintaining support for Python 2.7 is also easier. The major 
Linux distributions are working on shipping releases with Python 3 
installed by default. Anyone starting a new project in Python should 
look seriously at Python 3, unless they have a dependency that hasn’t 
been ported. At this point, though, libraries that don’t run on Python 3 
could almost be classified as “unmaintained.” 

What are the best ways to branch code out from an application into a 
library in terms of design, planning ahead, migration, etc.?

Applications are collections of “glue code” holding libraries together 
for a specific purpose. Designing your application with the features to 
achieve that purpose as a library first and then building the applica-
tion ensures that code is properly organized into logical units, which in 
turn makes testing simpler. It also means the features of an application 
are accessible through the library and can be remixed to create other 
applications. If you don’t take this approach, you risk the features of 
the application being tightly bound to the user interface, which makes 
them harder to modify and reuse.

What advice would you give to people planning to design their own 
Python libraries?

I always recommend designing libraries and APIs from the top down, 
applying design criteria such as the Single Responsibility Principle 
(SRP) at each layer. Think about what the caller will want to do with 
the library and create an API that supports those features. Think about 
what values can be stored in an instance and used by the methods ver-
sus what needs to be passed to each method every time. Finally, think 
about the implementation and whether the underlying code should be 
organized differently than the code of the public API.

SQLAlchemy is an excellent example of applying those guidelines. 
The declarative ORM [object relational mapping], data mapping, and 
expression generation layers are all separate. A developer can decide 
the right level of abstraction for entering the API and using the library 
based on their needs rather than constraints imposed by the library’s 
design.

What are the most common programming errors you encounter while 
reading Python developers’ code?

One area where Python’s idioms are significantly different from other 
languages is in looping and iteration. For example, one of the most 
common anti-patterns I see is the use of a for loop to filter a list by first 
appending items to a new list and then processing the result in a second 
loop (possibly after passing the list as an argument to a function). I 

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://sqlalchemy.org/


Modules, Libraries, and Frameworks    31

almost always suggest converting filtering loops like these into genera-
tor expressions, which are more efficient and easier to understand. It’s 
also common to see lists being combined so their contents can be pro-
cessed together in some way, rather than using itertools.chain().

There are other, more subtle things I often suggest in code reviews, 
like using a dict() as a lookup table instead of a long if:then:else block, 
making sure functions always return the same type of object (for exam-
ple, an empty list instead of None), reducing the number of arguments a 
function requires by combining related values into an object with either 
a tuple or a new class, and defining classes to use in public APIs instead 
of relying on dictionaries.

What’s your take on frameworks?
Frameworks are like any other kind of tool. They can help, but you need 
to take care when choosing one to make sure that it’s right for the job 
at hand.

Pulling out the common parts of your app into a framework helps 
you focus your development efforts on the unique aspects of an applica-
tion. Frameworks also provide a lot of bootstrapping code, for doing 
things like running in development mode and writing a test suite, that 
helps you bring an application to a useful state more quickly. They also 
encourage consistency in the implementation of the application, which 
means you end up with code that is easier to understand and more 
reusable.

There are some potential pitfalls too, though. The decision to use 
a particular framework usually implies something about the design 
of the application itself. Selecting the wrong framework can make an 
application harder to implement if those design constraints do not 
align naturally with the application’s requirements. You may end up 
fighting with the framework if you try to use patterns or idioms that 
differ from what it recommends.





3
D o c u m e n t a t i o n  a n D  

G o o D  a P i  P r a c t i c e 

In this chapter, we’ll discuss documenta-
tion; specifically, how to automate the 

trickier and more tedious aspects of docu-
menting your project with Sphinx. While you 

will still have to write the documentation yourself, 
Sphinx will simplify your task. As it is common to pro-
vide features using a Python library, we’ll also look 
at how to manage and document your public API changes. Because your 
API will have to evolve as you make changes to its features, it’s rare to get 
everything built perfectly from the outset, but I’ll show you a few things you 
can do to ensure your API is as user-friendly as possible.

We’ll end this chapter with an interview with Christophe de Vienne, 
author of the Web Services Made Easy framework, in which he discusses 
best practices for developing and maintaining APIs.



34   Chapter 3

Documenting with Sphinx
Documentation is one of the most important parts of writing software. 
Unfortunately, a lot of projects don’t provide proper documentation. 
Writing documentation is seen as complicated and daunting, but it doesn’t 
have to be: with the tools available to Python programmers, documenting 
your code can be just as easy as writing it.

One of the biggest reasons for sparse or nonexistent documentation is 
that many people assume the only way to document code is by hand. Even 
with multiple people on a project, this means one or more of your team will 
end up having to juggle contributing code with maintaining documenta-
tion—and if you ask any developer which job they’d prefer, you can be sure 
they’ll say they’d rather write software than write about software. 

Sometimes the documentation process is completely separate from the 
development process, meaning that the documentation is written by people 
who did not write the actual code. Furthermore, any documentation pro-
duced this way is likely to be out-of-date: it’s almost impossible for manual 
documentation to keep up with the pace of development, regardless of who 
handles it.

Here’s the bottom line: the more degrees of separation between your 
code and your documentation, the harder it will be to keep the latter prop-
erly maintained. So why keep them separate at all? It’s not only possible to 
put your documentation directly in the code itself, but it’s also simple to 
convert that documentation into easy-to-read HTML and PDF files.

The most common format for Python documentation is reStructuredText, 
or reST for short. It’s a lightweight markup language (like Markdown) that’s 
as easy to read and write for humans as it is for computers. Sphinx is the 
most commonly used tool for working with this format; Sphinx can read 
reST-formatted content and output documentation in a variety of other 
formats.

I recommend that your project documentation always include the 
following:

•	 The problem your project is intended to solve, in one or two sentences.

•	 The license your project is distributed under. If your software is open 
source, you should also include this information in a header in each 
code file; just because you’ve uploaded your code to the Internet 
doesn’t mean that people will know what they’re allowed to do with it.

•	 A small example of how your code works.

•	 Installation instructions.

•	 Links to community support, mailing list, IRC, forums, and so on.

•	 A link to your bug tracker system.

•	 A link to your source code so that developers can download and start 
delving into it right away.



Documentation and Good API Practice     35

You should also include a README.rst file that explains what your project 
does. This README should be displayed on your GitHub or PyPI project 
page; both sites know how to handle reST formatting. 

n o t e  If you’re using GitHub, you can also add a CONTRIBUTING.rst file that will 
be displayed when someone submits a pull request. It should provide a checklist for 
users to follow before they submit the request, including things like whether your 
code follows PEP 8 and reminders to run the unit tests. Read the Docs (http://
readthedocs .org/) allows you to build and publish your documentation online 
automatically. Signing up and configuring a project is straightforward. Then Read 
the Docs searches for your Sphinx configuration file, builds your documentation, and 
makes it available for your users to access. It’s a great companion to code-hosting sites.

Getting Started with Sphinx and reST
You can get Sphinx from http://www.sphinx-doc.org/. There are installation 
instructions on the site, but the easiest method is to install with pip install 
sphinx. 

Once Sphinx is installed, run sphinx-quickstart in your project’s top-
level directory. This will create the directory structure that Sphinx expects 
to find, along with two files in the doc/source folder: conf.py, which contains 
Sphinx’s configuration settings (and is absolutely required for Sphinx to 
work), and index.rst, which serves as the front page of your documentation. 
Once you run the quick-start command, you’ll be taken through a series of 
steps to designate naming conventions, version conventions, and options for 
other useful tools and standards. 

The conf.py file contains a few documented variables, such as the project 
name, the author, and the theme to use for HTML output. Feel free to edit 
this file at your convenience.

Once you’ve built your structure and set your defaults, you can build 
your documentation in HTML by calling sphinx-build with your source 
directory and output directory as arguments, as shown in Listing 3-1. The 
command sphinx-build reads the conf.py file from the source directory and 
parses all the .rst files from this directory. It renders them in HTML in the 
output directory.

$ sphinx-build doc/source doc/build
  import pkg_resources
Running Sphinx v1.2b1
loading pickled environment... done
No builder selected, using default: html
building [html]: targets for 1 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
preparing documents... done
writing output... [100%] index
writing additional files... genindex search



36   Chapter 3

copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded.

Listing 3-1: Building a basic Sphinx HTML document 

Now you can open doc/build/index.html in your favorite browser and 
read your documentation. 

n o t e  If you’re using setuptools or pbr (see Chapter 5) for packaging, Sphinx extends them 
to support the command setup.py build_sphinx, which will run sphinx-build auto-
matically. The pbr integration of Sphinx has some saner defaults, such as outputting 
the documentation in the /doc subdirectory.

Your documentation begins with the index.rst file, but it doesn’t have to 
end there: reST supports include directives to include reST files from other 
reST files, so there’s nothing stopping you from dividing your documenta-
tion into multiple files. Don’t worry too much about syntax and semantics 
to start; reST offers a lot of formatting possibilities, but you’ll have plenty of 
time to dive into the reference later. The complete reference (http://docutils 
.sourceforge.net/docs/ref/rst/restructuredtext.html) explains how to create titles, 
bulleted lists, tables, and more.

Sphinx Modules
Sphinx is highly extensible: its basic functionality supports only manual 
documentation, but it comes with a number of useful modules that enable 
automatic documentation and other features. For example, sphinx.ext.autodoc 
extracts reST-formatted docstrings from your modules and generates .rst files 
for inclusion. This is one of the options sphinx-quickstart will ask if you want 
to activate. If you didn’t select that option, however, you can still edit your 
conf.py file and add it as an extension like so:

extensions = ['sphinx.ext.autodoc']

Note that autodoc will not automatically recognize and include your 
modules. You need to explicitly indicate which modules you want docu-
mented by adding something like Listing 3-2 to one of your .rst files.

.. automodule:: foobar
u     :members: 
v     :undoc-members: 
w     :show-inheritance: 

Listing 3-2: Indicating the modules for autodoc to document

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html


Documentation and Good API Practice     37

In Listing 3-2, we make three requests, all of which are optional: that 
all documented members be printed u, that all undocumented members 
be printed v, and that inheritance be shown w. Also note the following:

•	 If you don’t include any directives, Sphinx won’t generate any output.

•	 If you only specify :members:, undocumented nodes on your module, 
class, or method tree will be skipped, even if all their members are doc-
umented. For example, if you document the methods of a class but not 
the class itself, :members: will exclude both the class and its methods. To 
keep this from happening, you’d have to write a docstring for the class 
or specify :undoc-members: as well.

•	 Your module needs to be where Python can import it. Adding ., .., 
and/or ../.. to sys.path can help.

The autodoc extension gives you the power to include most of your docu-
mentation in your source code. You can even pick and choose which mod-
ules and methods to document—it’s not an “all-or-nothing” solution. By 
maintaining your documentation directly alongside your source code, you 
can easily ensure it stays up to date.

Automating the Table of Contents with autosummary

If you’re writing a Python library, you’ll usually want to format your API 
documentation with a table of contents containing links to individual 
pages for each module. 

The sphinx.ext.autosummary module was created specifically to handle 
this common use case. First, you need to enable it in your conf.py by adding 
the following line:

extensions = ['sphinx.ext.autosummary']

Then, you can add something like the following to an .rst file to auto-
matically generate a table of contents for the specified modules:

.. autosummary::

   mymodule
   mymodule.submodule

This will create files called generated/mymodule.rst and generated/mymodule 
.submodule.rst containing the autodoc directives described earlier. Using 
this same format, you can specify which parts of your module API you want 
included in your documentation. 

n o t e  The sphinx-apidoc command can automatically create these files for you; check out 
the Sphinx documentation to find out more.



38   Chapter 3

Automating Testing with doctest

Another useful feature of Sphinx is the ability to run doctest on your 
examples automatically when you build your documentation. The stan-
dard Python doctest module searches your documentation for code snip-
pets and tests whether they accurately reflect what your code does. Every 
paragraph starting with the primary prompt >>> is treated as a code snip-
pet to test. For example, if you wanted to document the standard print 
function from Python, you could write this documentation snippet and 
doctest would check the result:

    To print something to the standard output, use the :py:func:`print` 
function:
>>> print("foobar")
    foobar

Having such examples in your documentation lets users understand 
your API. However, it’s easy to put off and eventually forget to update your 
examples as your API evolves. Fortunately, doctest helps make sure this 
doesn’t happen. If your documentation includes a step-by-step tutorial, 
doctest will help you keep it up to date throughout development by testing 
every line it can. 

You can also use doctest for documentation-driven development (DDD): write 
your documentation and examples first and then write code to match your 
documentation. Taking advantage of this feature is as simple as running 
sphinx-build with the special doctest builder, like this:

$ sphinx-build -b doctest doc/source doc/build
Running Sphinx v1.2b1
loading pickled environment... done
building [doctest]: targets for 1 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
running tests...

Document: index
---------------
1 items passed all tests:
   1 tests in default
1 tests in 1 items.
1 passed and 0 failed.
Test passed.

Doctest summary
===============
    1 test
    0 failures in tests
    0 failures in setup code
    0 failures in cleanup code
build succeeded.



Documentation and Good API Practice     39

When using the doctest builder, Sphinx reads the usual .rst files and 
executes code examples that are contained in those files.

Sphinx also provides a bevy of other features, either out of the box or 
through extension modules, including these:

•	 Linking between projects

•	 HTML themes

•	 Diagrams and formulas

•	 Output to Texinfo and EPUB format

•	 Linking to external documentation

You might not need all this functionality right away, but if you ever need 
it in the future, it’s good to know about in advance. Again, check out the full 
Sphinx documentation to find out more. 

Writing a Sphinx Extension
Sometimes off-the-shelf solutions just aren’t enough and you need to create 
custom tools to deal with a situation. 

Say you’re writing an HTTP REST API. Sphinx will only document 
the Python side of your API, forcing you to write your REST API docu-
mentation by hand, with all the problems that entails. The creators of Web 
Services Made Easy (WSME) (interviewed at the end of this chapter) have 
come up with a solution: a Sphinx extension called sphinxcontrib-pecanwsme 
that analyzes docstrings and actual Python code to generate REST API 
documentation automatically. 

n o t e  For other HTTP frameworks, such as Flask, Bottle, and Tornado, you can use 
sphinxcontrib.httpdomain. 

My point is that whenever you know you could extract information from 
your code to build documentation, you should, and you should also auto-
mate the process. This is better than trying to maintain manually written 
documentation, especially when you can leverage auto-publication tools 
such as Read the Docs.

We’ll examine the sphinxcontrib-pecanwsme extension as an example of 
writing your own Sphinx extension. The first step is to write a module—
preferably as a submodule of sphinxcontrib, as long as your module is generic 
enough—and pick a name for it. Sphinx requires this module to have one 
predefined function called setup(app), which contains the methods you’ll use 
to connect your code to Sphinx events and directives. The full list of methods 
is available in the Sphinx extension API at http://www.sphinx-doc.org/en/master/
extdev/appapi.html.

For example, the sphinxcontrib-pecanwsme extension includes a single 
directive called rest-controller, added using the setup(app) function. This 
added directive needs a fully qualified controller class name to generate 
documentation for, as shown in Listing 3-3.

http://www.sphinx-doc.org/en/master/extdev/appapi.html
http://www.sphinx-doc.org/en/master/extdev/appapi.html
janelle
Sticky Note
Marked set by janelle



40   Chapter 3

def setup(app):
    app.add_directive('rest-controller', RESTControllerDirective)

Listing 3-3: Code from sphinxcontrib.pecanwsme.rest.setup that adds the rest-controller 
directive

The add_directive method in Listing 3-3 registers the rest-controller 
directive and delegates its handling to the RESTControllerDirective class. This 
RESTControllerDirective class exposes certain attributes that indicate how the 
directive treats content, whether it has arguments, and so on. The class also 
implements a run() method that actually extracts the documentation from 
your code and returns parsed data to Sphinx.

The repository at https://bitbucket.org/birkenfeld/sphinx-contrib/src/ has 
many small modules that can help you develop your own extensions. 

n o t e  Even though Sphinx is written in Python and targets it by default, extensions are 
available that allow it to support other languages as well. You can use Sphinx to 
document your project in full, even if it uses multiple languages at once.

As another example, in one of my projects named Gnocchi—a database 
for storing and indexing time series data at a large scale—I’ve used a cus-
tom Sphinx extension to autogenerate documentation. Gnocchi provides 
a REST API, and usually to document such an API, projects will manually 
write examples of what an API request and its response should look like. 
Unfortunately, this approach is error prone and out of sync with reality.

Using the unit-testing code available to test the Gnocchi API, we built a 
Sphinx extension to run Gnocchi and generate an .rst file containing HTTP 
requests and responses run against a real Gnocchi server. In this way, we 
ensure the documentation is up to date: the server responses are not manu-
ally crafted, and if a manually written request fails, then the documentation 
process fails, and we know that we must fix the documentation.

Including that code in the book would be too verbose, but you can 
check the sources of Gnocchi online and look at the gnocchi.gendoc module 
to get an idea of how it works.

Managing Changes to Your APIs
Well-documented code is a sign to other developers that the code is suitable 
to be imported and used to build something else. When building a library 
and exporting an API for other developers to use, for example, you want to 
provide the reassurance of solid documentation.

This section will cover best practices for public APIs. These will be 
exposed to users of your library or application, and while you can do what-
ever you like with internal APIs, public APIs should be handled with care. 

To distinguish between public and private APIs, the Python conven-
tion is to prefix the symbol for a private API with an underscore: foo is 
public, but _bar is private. You should use this convention both to recognize 



Documentation and Good API Practice     41

whether another API is public or private and to name your own APIs. In 
contrast to other languages, such as Java, Python does not enforce any 
restriction on accessing code marked as private or public. The naming con-
ventions are just to facilitate understanding among programmers.

Numbering API Versions
When properly constructed, the version number of an API can give users a 
great deal of information. Python has no particular system or convention 
in place for numbering API versions, but we can take inspiration from Unix 
platforms, which use a complex management system for libraries with fine-
grained version identifiers. 

Generally, your version numbering should reflect changes in the API 
that will impact users. For example, when the API has a major change, the 
major version number might change from 1 to 2. When only a few new API 
calls are added, the lesser number might go from 2.2 to 2.3. If a change only 
involves bug fixes, the version might bump from 2.2.0 to 2.2.1. A good exam-
ple of how to use version numbering is the Python requests library (https://
pypi.python.org/pypi/requests/). This library increments its API numbers based 
on the number of changes in each new version and the impact the changes 
might have on consuming programs. 

Version numbers hint to developers that they should look at changes 
between two releases of a library, but alone they are not enough to fully 
guide a developer: you must provide detailed documentation to describe 
those changes.

Documenting Your API Changes
Whenever you make changes to an API, the first and most important thing 
to do is to heavily document them so that a consumer of your code can 
get a quick overview of what’s changing. Your document should cover the 
following:

•	 New elements of the new interface 

•	 Elements of the old interface that are deprecated 

•	 Instructions on how to migrate to the new interface 

You should also make sure that you don’t remove the old interface right 
away. I recommend keeping the old interface until it becomes too much 
trouble to do so. If you have marked it as deprecated, users will know not to 
use it. 

Listing 3-4 is an example of good API change documentation for code 
that provides a representation of a car object that can turn in any direction. 
For whatever reason, the developers decided to retract the turn_left method 
and instead provide a generic turn method that can take the direction as an 
argument.



42   Chapter 3

class Car(object):

    def turn_left(self):
        """Turn the car left.

        .. deprecated:: 1.1
           Use :func:`turn` instead with the direction argument set to left
        """
        self.turn(direction='left')

    def turn(self, direction):
        """Turn the car in some direction.

        :param direction: The direction to turn to.
        :type direction: str
        """
        # Write actual code for the turn function here instead
        pass

Listing 3-4: An example of API change documentation for a car object

The triple quotes here, """, indicate the start and end of the docstrings, 
which will be pulled into the documentation when the user enters help(Car 
.turn_left) into the terminal or extracts the documentation with an external 
tool such as Sphinx. The deprecation of the car.turn_left method is indi-
cated by .. deprecated 1.1, where 1.1 refers to the first version released that 
ships this code as deprecated. 

Using this deprecation method and making it visible via Sphinx clearly 
tells users that the function should not be used and gives them direct access 
to the new function along with an explanation of how to migrate old code. 

Figure 3-1 shows Sphinx documentation that explains some deprecated 
functions. 

Figure 3-1: Explanation of some deprecated functions



Documentation and Good API Practice     43

The downside of this approach is that it relies on developers reading 
your changelog or documentation when they upgrade to a newer version 
of your Python package. However, there is a solution for that: mark your 
deprecated functions with the warnings module.

Marking Deprecated Functions with the warnings Module
Though deprecated modules should be marked well enough in documen-
tation that users will not attempt to call them, Python also provides the 
warnings module, which allows your code to issue various kinds of warnings 
when a deprecated function is called. These warnings, DeprecationWarning 
and PendingDeprecationWarning, can be used to tell the developer that a func-
tion they’re calling is deprecated or going to be deprecated, respectively. 

n o t e  For those who work with C, this is a handy counterpart to the __attribute__  
((deprecated)) GCC extension.

To go back to the car object example in Listing 3-4, we can use this to 
warn users when they are attempting to call deprecated functions, as shown 
in Listing 3-5.

import warnings

class Car(object):
    def turn_left(self):
        """Turn the car left.

        u .. deprecated:: 1.1
           Use :func:`turn` instead with the direction argument set to "left".
        """

        v warnings.warn("turn_left is deprecated; use turn instead",
                      DeprecationWarning)
        self.turn(direction='left')

    def turn(self, direction):
        """Turn the car in some direction.

        :param direction: The direction to turn to.
        :type direction: str
        """
        # Write actual code here instead
        pass

Listing 3-5: A documented change to the car object API using the warnings module

Here, the turn_left function has been deprecated u. By adding the 
warnings.warn line, we can write our own error message v. Now, if any code 
should call the turn_left function, a warning will appear that looks like this:

>>> Car().turn_left()
__main__:8: DeprecationWarning: turn_left is deprecated; use turn instead



44   Chapter 3

Python 2.7 and later versions, by default, do not print any warnings 
emitted by the warnings module because the warnings are filtered. To see 
those warnings printed, you need to pass the -W option to the Python exe-
cutable. The option -W all will print all warnings to stderr. See the Python 
man page for more information on the possible values for -W.

When running test suites, developers can run Python with the -W error 
option, which will raise an error every time an obsolete function is called. 
Developers using your library can readily find exactly where their code 
needs to be fixed. Listing 3-6 shows how Python transforms warnings into 
fatal exceptions when Python is called with the -W error option.

>>> import warnings
>>> warnings.warn("This is deprecated", DeprecationWarning)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
DeprecationWarning: This is deprecated

Listing 3-6: Running Python with the -W error option and getting a deprecation error

Warnings are usually missed at runtime, and running a production sys-
tem with the -W error option is rarely a good idea. Running the test suite of 
a Python application with the -W error option, on the other hand, can be a 
good way to catch warnings and fix them early on.

However, manually writing all those warnings, docstring updates, and 
so on can become tedious, so the debtcollector library has been created to 
help automate some of that. The debtcollector library provides a few decora-
tors that you can use with your functions to make sure the correct warnings 
are emitted and the docstring is updated correctly. Listing 3-7 shows how 
you can, with a simple decorator, indicate that a function has been moved 
to some other place.

from debtcollector import moves

class Car(object):
    @moves.moved_method('turn', version='1.1')
    def turn_left(self):
        """Turn the car left."""

        return self.turn(direction='left')
    def turn(self, direction):
        """Turn the car in some direction.

        :param direction: The direction to turn to.
        :type direction: str
        """
        # Write actual code here instead
        pass

Listing 3-7: An API change automated with debtcollector

Here we’re using the moves() method from debtcollector, whose moved_
method decorator makes turn_left emit a DeprecationWarning whenever it’s called. 



Documentation and Good API Practice     45

Summary
Sphinx is the de facto standard for documenting Python projects. It sup-
ports a wide variety of syntax, and it is easy to add new syntax or features if 
your project has particular needs. Sphinx can also automate tasks such as 
generating indexes or extracting documentation from your code, making it 
easy to maintain documentation in the long run. 

Documenting changes to your API is critical, especially when you 
deprecate functionality, so that users are not caught unawares. Ways to 
document deprecations include the Sphinx deprecated keyword and the 
warnings module, and the debtcollector library can automate maintaining 
this documentation.

Christophe de Vienne on Developing APIs
Christophe is a Python developer and the author of the WSME (Web 
Services Made Easy) framework, which allows developers to define web ser-
vices in a Pythonic way and supports a wide variety of APIs, allowing it to be 
plugged into many other web frameworks.

What mistakes do developers tend to make when designing a Python API?
There are a few common mistakes I avoid when designing a Python API 
by following these rules:

•	 Don’t make it too complicated. Keep it simple. Complicated APIs are 
hard to understand and hard to document. While the actual library 
functionality doesn’t have to be simple as well, it’s smart to make it 
simple so users can’t easily make mistakes. For example, the library 
is very simple and intuitive, but it does complex things behind the 
scenes. The urllib API, by contrast, is almost as complicated as the 
things it does, making it hard to use. 

•	 Make the magic visible. When your API does things that your docu-
mentation doesn’t explain, your end users will want to crack open your 
code and see what’s going on under the hood. It’s okay if you’ve got 
some magic happening behind the scenes, but your end users should 
never see anything unexpected happening up front, or they could 
become confused or rely on a behavior that may change. 

•	 Don’t forget use cases. When you’re so focused on writing code, it’s 
easy to forget to think about how your library will actually be used. 
Thinking up good use cases makes it easier to design an API. 

•	 Write unit tests. TDD (test-driven development) is a very efficient way to 
write libraries, especially in Python, because it forces the developer to 
assume the role of the end user from the very beginning, which leads 
the developer to design for usability. It’s the only approach I know 
of that allows a programmer to completely rewrite a library, as a last 
resort. 



46   Chapter 3

What aspects of Python may affect how easy it is to design a library API?
Python has no built-in way to define which sections of the API are public 
and which are private, which can be both a problem and an advantage.

It’s a problem because it can lead the developer to not fully con-
sider which parts of their API are public and which parts should remain 
private. But with a little discipline, documentation, and (if needed) 
tools like zope.interface, it doesn’t stay a problem for long.

It’s an advantage when it makes it quicker and easier to refactor 
APIs while keeping compatibility with previous versions.

What do you consider when thinking about your API’s evolution, deprecation, 
and removal?

There are several criteria I weigh when making any decision regarding 
API development:

•	 How difficult will it be for users of the library to adapt their code? 
Considering that there are people relying on your API, any change 
you make has to be worth the effort needed to adopt it. This rule is 
intended to prevent incompatible changes to the parts of the API that 
are in common use. That said, one of the advantages of Python is that 
it’s relatively easy to refactor code to adopt an API change. 

•	 How easy will it be to maintain my API? Simplifying the implementa-
tion, cleaning up the codebase, making the API easier to use, having 
more complete unit tests, making the API easier to understand at first 
glance . . . all of these things will make your life as a maintainer easier. 

•	 How can I keep my API consistent when applying a change? If all the 
functions in your API follow a similar pattern (such as requiring the 
same parameter in the first position), make sure new functions follow 
that pattern as well. Also, doing too many things at once is a great way 
to end up doing none of them right: keep your API focused on what it’s 
meant to do. 

•	 How will users benefit from the change? Last but not least, always con-
sider the users’ point of view. 

What advice do you have regarding API documentation in Python?
Good documentation makes it easy for newcomers to adopt your library. 
Neglecting it will drive away a lot of potential users—not just beginners, 
either. The problem is, documenting is difficult, so it gets neglected all 
the time!

•	 Document early and include your documentation build in continu-
ous integration. With the Read the Docs tool for creating and hosting 
documentation, there’s no excuse for not having documentation built 
and published (at least for open source software).



Documentation and Good API Practice     47

•	 Use docstrings to document classes and functions in your API. If you 
follow the PEP 257 (https://www.python.org/dev/peps/pep-0257/) guide-
lines, developers won’t have to read your source to understand what your 
API does. Generate HTML documentation from your docstrings—and 
don’t limit it to the API reference.

•	 Give practical examples throughout. Have at least one “startup guide” 
that will show newcomers how to build a working example. The first 
page of the documentation should give a quick overview of your API’s 
basic and representative use case.

•	 Document the evolution of your API in detail, version by version. 
Version control system (VCS) logs are not enough!

•	 Make your documentation accessible and, if possible, comfortable to 
read. Your users need to be able to find it easily and get the informa-
tion they need without feeling like they’re being tortured. Publishing 
your documentation through PyPI is one way to achieve this; publish-
ing on Read the Docs is also a good idea, since users will expect to find 
your documentation there.

•	 Finally, choose a theme that is both efficient and attractive. I chose the 
“Cloud” Sphinx theme for WSME, but there are plenty of other themes 
out there to choose from. You don’t have to be a web expert to produce 
nice-looking documentation.





4
H a n d l i n g  T i m e s T a m p s  

a n d  T i m e  Z o n e s

Time zones are complicated. Most people 
expect dealing with time zones to involve 

merely adding or subtracting a few hours 
from the universal time reference, UTC 

(Coordinated Universal Time), from −12 hours to 
+12 hours. 

However, reality shows otherwise: time zones are not logical or pre-
dictable. There are time zones with 15-minute granularity; countries that 
change time zones twice a year; countries that use a custom time zone 
during summer, known as daylight saving time, that starts on different 
dates; plus tons of special and corner cases. These make the history of 
time zones interesting but also complicate how to handle them. All of 
those particularities should make you stop and think when dealing with 
time zones.

This chapter will outline why dealing with time zones is tricky and how 
to best handle them in your programs. We’ll look at how to build timestamp 
objects, how and why to make them time zone aware, and how to deal with 
corner cases you might come across. 



50   Chapter 4

The Problem of Missing Time Zones
A timestamp without a time zone attached gives no useful information, 
because without the time zone, you cannot infer what point in time your 
application is really referring to. Without their respective time zones, there-
fore, you can’t compare two timestamps; that would be like comparing days 
of the week without accompanying dates—whether Monday is before or 
after Tuesday depends on what weeks they’re in. Timestamps without time 
zones attached should be considered irrelevant.

For that reason, your application should never have to handle timestamps 
with no time zone. Instead, it must raise an error if no time zone is provided, 
or it should make clear what default time zone is assumed—for example, it’s 
common practice to choose UTC as the default time zone.

You also must be careful of making any kind of time zone conversion 
before storing  your timestamps. Imagine a user creates a recurring event every 
Wednesday at 10:00 am in their local time zone, say Central European Time 
(CET). CET is an hour ahead of UTC, so if you convert that timestamp to 
UTC to store it, the event will be stored as every Wednesday at 09:00 am. The 
CET time zone switches from UTC+01:00 to UTC+02:00 in the summer, so 
on top of that, in the summer months, your application will compute that the 
event starts at 11:00 am CET every Wednesday. You can see how this program 
quickly becomes redundant!

Now that you understand the general problem of handling time zones, 
let’s dig into our favorite language. Python comes with a timestamp object 
named datetime.datetime that can store date and time precise to the micro-
second. The datetime.datetime object can be either time zone aware, in which 
case it embeds time zone information, or time zone unaware, in which case 
it does not. Unfortunately, the datetime API returns a time zone–unaware 
object by default, as you’ll soon see in Listing 4-1. Let’s look at how to build a 
default timestamp object and then how to rectify it so that it uses time zones. 

Building Default datetime Objects
To build a datetime object with the current date and time as values, you can 
use the datetime.datetime.utcnow() function. This function retrieves the date 
and time for the UTC time zone right now, as shown in Listing 4-1. To build 
this same object using the date and time for the time zone of the region the 
machine is in, you can use the datetime.datetime.now() method. Listing 4-1 
retrieves the time and date for both UTC and my region’s time zone.

>>> import datetime
>>> datetime.datetime.utcnow()

     datetime.datetime(2018, 6, 15, 13, 24, 48, 27631)



Handling Timestamps and Time Zones    51

>>> datetime.datetime.utcnow().tzinfo is None
     True

Listing 4-1: Getting the time of the day with datetime

We import the datetime library and define the datetime object as using 
the UTC time zone. This returns a UTC timestamp whose values are year, 
month, date, hours, minutes, seconds, and microseconds , respectively, in 
the listing. We can check whether this object has time zone information by 
checking the tzinfo object, and here we’re told that it doesn’t .

We then create the datetime object using the datetime.datetime.now() 
method to retrieve the current date and time in the default time zone for 
the region of the machine: 

>>> datetime.datetime.now()
     datetime.datetime(2018, 6, 15, 15, 24, 52, 276161)

This timestamp, too, is returned without any time zone, as we can tell 
from the absence of the tzinfo field —if the time zone information had 
been present, it would have appeared at the end of the output as something 
like tzinfo=<UTC>. 

The datetime API always returns unaware datetime objects by default, 
and since there is no way for you to tell what the time zone is from the out-
put, these objects are pretty useless. 

Armin Ronacher, creator of the Flask framework, suggests that an 
application should always assume the unaware datetime objects in Python 
are UTC. However, as we just saw, this doesn’t work for objects returned by 
datetime.datetime.now(). When you are building datetime objects, I strongly 
recommend that you always make sure they are time zone aware. That 
ensures you can always compare your objects directly and check whether 
they are returned correctly with the information you need. Let’s see how to 
create time zone–aware timestamps using tzinfo objects.

Bonus: Cons T ruC T ing a daT e T ime oBjeC T f rom a daT e

You can also build your own datetime object with a particular date by pass-
ing the values you want for the different components of the day, as shown in 
Listing 4-2.

>>> import datetime
>>> datetime.datetime(2018, 6, 19, 19, 54, 49)
datetime.datetime(2018, 6, 19, 19, 54, 49)

Listing 4-2: Building your own timestamp object



52   Chapter 4

Time Zone–Aware Timestamps with dateutil
There are already many databases of existing time zones, maintained by 
central authorities such as IANA (Internet Assigned Numbers Authority), 
which are shipped with all major operating systems. For this reason, rather 
than creating our own time zone classes and manually duplicating those 
in each Python project, Python developers rely on the dateutil project to 
obtain tzinfo classes. The dateutil project provides the Python module tz, 
which makes time zone information available directly, without much effort: 
the tz module can access the operating system’s time zone information, as 
well as ship and embed the time zone database so it is directly accessible 
from Python.

You can install dateutil using pip with the command pip install 
python-dateutil. The dateutil API allows you to obtain a tzinfo object 
based on a time zone name, like so:

>>> from dateutil import tz
>>> tz.gettz("Europe/Paris")
tzfile('/usr/share/zoneinfo/Europe/Paris')
>>> tz.gettz("GMT+1")
tzstr('GMT+1')

The dateutil.tz.gettz() method returns an object implementing the 
tzinfo interface. This method accepts various string formats as argument, 
such as the time zone based on a location (for example, “Europe/Paris”) or 
a time zone relative to GMT. The dateutil time zone objects can be used as 
tzinfo classes directly, as demonstrated in Listing 4-3.

>>> import datetime
>>> from dateutil import tz
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2018, 10, 16, 19, 40, 18, 279100)
>>> tz = tz.gettz("Europe/Paris")
>>> now.replace(tzinfo=tz)
datetime.datetime(2018, 10, 16, 19, 40, 18, 279100, tzinfo=tzfile('/usr/share/zoneinfo/Europe/
Paris'))

Listing 4-3: Using dateutil objects as tzinfo classes

As long as you know the name of the desired time zone, you can obtain 
a tzinfo object that matches the time zone you target. The dateutil module 
can access the time zone managed by the operating system, and if that 
information is for some reason unavailable, will fall back on its own list of 
embedded time zones. If you ever need to access this embedded list, you 
can do so via the datetutil.zoneinfo module:

>>> from dateutil.zoneinfo import get_zonefile_instance
>>> zones = list(get_zonefile_instance().zones)
>>> sorted(zones)[:5]



Handling Timestamps and Time Zones    53

['Africa/Abidjan', 'Africa/Accra', 'Africa/Addis_Ababa', 'Africa/Algiers', 'Africa/Asmara']
>>> len(zones)
592

In some cases, your program does not know which time zone it’s running 
in, so you’ll need to determine it yourself. The datetutil.tz.gettz() function 
will return the local time zone of your computer if you pass no argument to 
it, as shown in Listing 4-4.

>>> from dateutil import tz
>>> import datetime
>>> now = datetime.datetime.now()
>>> localzone = tz.gettz()
>>> localzone
tzfile('/etc/localtime')
>>> localzone.tzname(datetime.datetime(2018, 10, 19))
'CEST'
>>> localzone.tzname(datetime.datetime(2018, 11, 19))
'CET'

Listing 4-4: Obtaining your local time zone

As you can see, we pass two dates to localzone.tzname(datetime.datetime()) 
separately, and dateutil is able to tell us that one is in Central European 
Summer Time (CEST) and the other is in Central European Time (no sum-
mer). If you pass in your current date, you’ll get your own current time zone.

You can use objects from the dateutil library in tzinfo classes without 
having to bother implementing those yourself in your application. This 
makes it easy to convert unaware datetime objects to aware datetime objects.

impl e me n T ing Your ow n T ime Zone Cl a sse s 

A class exists in Python that allows you to implement time zone classes your-
self: the datetime.tzinfo class is an abstract class that provides a base for 
implementing classes representing time zones. If you ever want to implement 
a class to represent a time zone, you need to use this as the parent class and 
implement three different methods:

•	 utcoffset(dt), which must return an offset from UTC in minutes east of 
UTC for the time zone

•	 dst(dt), which must return the daylight saving time adjustment in minutes 
east of UTC for the time zone

•	 tzname(dt), which must return the name of the time zone as a string

These three methods will embed a tzinfo object, allowing you to translate 
any time zone–aware datetime to another time zone.

However, as mentioned, since time zone databases exist, it’s impractical 
to implement those time zone classes oneself.



54   Chapter 4

Serializing Time Zone–Aware datetime Objects
You’ll often need to transport a datetime object from one point to another, 
where those different points might not be Python native. The typical case 
nowadays would be with an HTTP REST API, which must return datetime 
objects serialized to a client. The native Python method named isoformat 
can be used to serialize datetime objects for non-Python native points, as 
shown in Listing 4-5.

>>> import datetime
>>> from dateutil import tz

 >>> def utcnow():
    return datetime.datetime.now(tz=tz.tzutc())
>>> utcnow()

 datetime.datetime(2018, 6, 15, 14, 45, 19, 182703, tzinfo=tzutc())
 >>> utcnow().isoformat()

'2018-06-15T14:45:21.982600+00:00'

Listing 4-5: Serializing a time zone–aware datetime object

We define a new function called utcnow and tell it explicitly to return an 
object with the UTC time zone . As you can see, the object returned now 
contains time zone information . We then format the string using the ISO 
format , ensuring the timestamp also contains some time zone informa-
tion (the +00:00 part).

You can see I’ve used the method isoformat() to format the output. I rec-
ommend that you always format your datetime input and output strings using 
ISO 8601, with the method datetime.datetime.isoformat(), to return time-
stamps formatted in a readable way that includes the time zone information.

Your ISO 8601–formatted strings can then be converted to native 
datetime.datetime objects. The iso8601 module offers only one function, 
parse_date, which does all the hard work of parsing the string and deter-
mining the timestamp and time zone values. The iso8601 module is not 
provided as a built-in module in Python, so you need to install it using 
pip install iso8601. Listing 4-6 shows how to parse a timestamp using ISO 
8601.

>>> import iso8601
>>> import datetime
>>> from dateutil import tz
>>> now = datetime.datetime.utcnow()
>>> now.isoformat()
'2018-06-19T09:42:00.764337'

 >>> parsed = iso8601.parse_date(now.isoformat())
>>> parsed
datetime.datetime(2018, 6, 19, 9, 42, 0, 764337, tzinfo=<iso8601.Utc>)
>>> parsed == now.replace(tzinfo=tz.tzutc())
True

Listing 4-6: Using the iso8601 module to parse an ISO 8601–formatted timestamp



Handling Timestamps and Time Zones    55

In Listing 4-6, the iso8601 module is used to construct a datetime object 
from a string. By calling iso8601.parse_date on a string containing an ISO 
8601–formatted timestamp , the library is able to return a datetime object. 
Since that string does not contain any time zone information, the iso8601 
module assumes that the time zone is UTC. If a time zone contains correct 
time zone information, the iso8601 module returns correctly.

Using time zone–aware datetime objects and using ISO 8601 as the format 
for their string representation is a perfect solution for most problems around 
time zone, making sure no mistakes are made and building great interoper-
ability between your application and the outside world. 

Solving Ambiguous Times
There are certain cases where the time of the day can be ambiguous; for 
example during the daylight saving time transition when the same “wall 
clock” time occurs twice a day. The dateutil library provides us with the 
is_ambiguous method to distinguish such timestamps. To show this in action, 
we’ll create an ambiguous timestamp in Listing 4-7.

>>> import dateutil.tz
>>> localtz = dateutil.tz.gettz("Europe/Paris")
>>> confusing = datetime.datetime(2017, 10, 29, 2, 30)
>>> localtz.is_ambiguous(confusing)
True

Listing 4-7: A confusing timestamp, occurring during the daylight saving time crossover

On the night of October 30, 2017, Paris switched from summer to winter 
time. The city switched at 3:00 am, when the time goes back to 2:00 am. If 
we try to use a timestamp at 2:30 on that date, there is no way for this object 
to be sure whether it is after or before the daylight saving time change.

However, it is possible to specify which side of the fold a timestamp is 
on by using the fold attribute, added to datetime objects from Python 3.6 by 
PEP 495 (Local Time Disambiguation—https://www.python.org/dev/peps/
pep-0495/). This attribute indicates which side of the fold the datetime is 
on, as demonstrated in Listing 4-8.

>>> import dateutil.tz
>>> import datetime
>>> localtz = dateutil.tz.gettz("Europe/Paris")
>>> utc = dateutil.tz.tzutc()
>>> confusing = datetime.datetime(2017, 10, 29, 2, 30, tzinfo=localtz)
>>> confusing.replace(fold=0).astime zone(utc)
datetime.datetime(2017, 10, 29, 0, 30, tzinfo=tzutc())
>>> confusing.replace(fold=1).astime zone(utc)
datetime.datetime(2017, 10, 29, 1, 30, tzinfo=tzutc())

Listing 4-8: Disambiguating the ambiguous timestamp

https://www.python.org/dev/peps/pep-0495/
https://www.python.org/dev/peps/pep-0495/


56   Chapter 4

You’ll need to use this in only very rare cases, since ambiguous time-
stamps occur only in a small window. Sticking to UTC is a great workaround 
to keep life simple and avoid running into time zone issues. However, it is 
good to know that the fold attribute exists and that dateutil is able to help in 
such cases.

Summary
In this chapter, we have seen how crucial it is to carry time zone informa-
tion in time stamps. The built-in datetime module is not complete in this 
regard, but the dateutil module is a great complement: it allows us to get 
tzinfo-compatible objects that are ready to be used. The dateutil module 
also helps us solve subtle issues such as daylight saving time ambiguity.

The ISO 8601 standard format is an excellent choice for serializing and 
unserializing timestamps because it is readily available in Python and com-
patible with any other programming language.



5
D i s t r i b u t i n g  Y o u r  s o f t w a r e

It’s safe to say that at some point, you 
will want to distribute your software. As 

tempted as you might be to just zip your 
code and upload it to the internet, Python 

provides tools to make it easier for your end users 
to get your software to work. You should already be 
familiar with using setup.py to install Python applica-
tions and libraries, but you have probably never delved 
into how it works behind the scenes or how to make a 
setup.py of your own. 

In this chapter, you’ll learn the history of setup.py, how the file works, 
and how to create your own custom setup.py. We’ll also take a look at some 
of the less well-known capabilities of the package installation tool pip and 
how to make your software downloadable via pip. Finally, we’ll see how to use 
Python’s entry points to make functions easy to find between programs. With 
these skills, you can make your published software accessible for end users.



58   Chapter 5

A Bit of setup.py History
The distutils library, originally created by software developer Greg Ward, has 
been part of the standard Python library since 1998. Ward sought to create 
an easy way for developers to automate the installation process for their end 
users. Packages provide the setup.py file as the standard Python script for 
their installation, and they can use distutils to install themselves, as shown 
in Listing 5-1. 

#!/usr/bin/python
from distutils.core import setup

setup(name="rebuildd",
      description="Debian packages rebuild tool",
      author="Julien Danjou",
      author_email="acid@debian.org",
      url="http://julien.danjou.info/software/rebuildd.html",
      packages=['rebuildd'])

Listing 5-1: Building a setup.py using distutils

With the setup.py file as the root of a project, all users have to do to build 
or install your software is run that file with the appropriate command as its 
argument. Even if your distribution includes C modules in addition to native 
Python ones, distutils can handle them automatically.

Development of distutils was abandoned in 2000; since then, other 
developers have picked up where it left off. One of the notable successors 
is the packaging library known as setuptools, which offers more frequent 
updates and advanced features, such as automatic dependency handling, 
the Egg distribution format, and the easy_install command. Since distutils 
was still the accepted means of packaging software included with the Python 
Standard Library at the time of development, setuptools provided a degree 
of backward compatibility with it. Listing 5-2 shows how you’d use setuptools 
to build the same installation package as in Listing 5-1.

#!/usr/bin/env python
import setuptools

setuptools.setup(
    name="rebuildd",
    version="0.2",
    author="Julien Danjou",
    author_email="acid@debian.org",
    description="Debian packages rebuild tool",
    license="GPL",
    url="http://julien.danjou.info/software/rebuildd/",
    packages=['rebuildd'],
    classifiers=[
        "Development Status :: 2 - Pre-Alpha",
        "Intended Audience :: Developers",
        "Intended Audience :: Information Technology",
        "License :: OSI Approved :: GNU General Public License (GPL)",



Distributing Your Software   59

        "Operating System :: OS Independent",
        "Programming Language :: Python"
    ],
)

Listing 5-2: Building a setup.py using setuptools

Eventually, development on setuptools slowed down too, but it wasn’t 
long before another group of developers forked it to create a new library 
called distribute, which offered several advantages over setuptools, includ-
ing fewer bugs and Python 3 support. 

All the best stories have a twist ending, though: in March 2013, the teams 
behind setuptools and distribute decided to merge their codebases under 
the aegis of the original setuptools project. So distribute is now deprecated, 
and setuptools is once more the canonical way to handle advanced Python 
installations.

While all this was happening, another project, known as distutils2, was 
developed with the intention of completely replacing distutils in the Python 
Standard Library. Unlike both distutils and setuptools, it stored package 
metadata in a plaintext file, setup.cfg, which was easier both for developers to 
write and for external tools to read. However, distutils2 retained some of the 
failings of distutils, such as its obtuse command-based design, and lacked 
support for entry points and native script execution on Windows—both fea-
tures provided by setuptools. For these and other reasons, plans to include 
distutils2, renamed as packaging, in the Python 3.3 Standard Library fell 
through, and the project was abandoned in 2012.

There is still a chance for packaging to rise from the ashes through 
distlib, an up-and-coming effort to replace distutils. Before release, it 
was rumored that the distlib package would become part of the Standard 
Library in Python 3.4, but that never came to be. Including the best features 
from packaging, distlib implements the basic groundwork described in the 
packaging-related PEPs.

So, to recap:

•	 distutils is part of the Python Standard Library and can handle simple 
package installations.

•	 setuptools, the standard for advanced package installations, was at first 
deprecated but is now back in active development and the de facto 
standard.

•	 distribute has been merged back into setuptools as of version 0.7;  
distutils2 (aka packaging) has been abandoned.

•	 distlib might replace distutils in the future.

There are other packaging libraries out there, but these are the five 
you’ll encounter the most. Be careful when researching these libraries on 
the internet: plenty of documentation is outdated due to the complicated 
history outlined above. The official documentation is up-to-date, however.

In short, setuptools is the distribution library to use for the time being, 
but keep an eye out for distlib in the future.

https://readthedocs.org/projects/distlib/


60   Chapter 5

Packaging with setup.cfg
You’ve probably already tried to write a setup.py for a package at some point, 
either by copying one from another project or by skimming through the doc-
umentation and building it yourself. Building a setup.py is not an intuitive 
task. Choosing the right tool to use is just the first challenge. In this section, 
I want to introduce you to one of the recent improvements to setuptools: the 
setup.cfg file support.

This is what a setup.py using a setup.cfg file looks like:

import setuptools

setuptools.setup()

Two lines of code—it is that simple. The actual metadata the setup 
requires is stored in setup.cfg, as in Listing 5-3.

[metadata]
name = foobar
author = Dave Null
author-email = foobar@example.org
license = MIT
long_description = file: README.rst
url = http://pypi.python.org/pypi/foobar
requires-python = >=2.6
classifiers =
    Development Status :: 4 - Beta
    Environment :: Console
    Intended Audience :: Developers
    Intended Audience :: Information Technology
    License :: OSI Approved :: Apache Software License
    Operating System :: OS Independent
    Programming Language :: Python

Listing 5-3: The setup.cfg metadata

As you can see, setup.cfg uses a format that’s easy to write and read, 
directly inspired by distutils2. Many other tools, such as Sphinx or Wheel, 
also read configuration from this setup.cfg file—that alone is a good argu-
ment to start using it.

In Listing 5-3, the description of the project is read from the README 
.rst file. It’s good practice to always have a README file—preferably in the 
RST format—so users can quickly understand what the project is about. With 
just these basic setup.py and setup.cfg files, your package is ready to be pub-
lished and used by other developers and applications. The setuptools docu-
mentation provides more details if needed, for example, if you have some 
extra steps in your installation process or want to include extra files.

Another useful packaging tool is pbr, short for Python Build Reasonableness. 
The project was started in OpenStack as an extension of setuptools to 



Distributing Your Software   61

facilitate installation and deployment of packages. The pbr packaging tool, 
used alongside setuptools, implements features absent from setuptools, includ-
ing these:

•	 Automatic generation of Sphinx documentation

•	 Automatic generation of AUTHORS and ChangeLog files based on git 
history

•	 Automatic creation of file lists for git

•	 Version management based on git tags using semantic versioning

And all this with little to no effort on your part. To use pbr, you just 
need to enable it, as shown in Listing 5-4.

import setuptools

setuptools.setup(setup_requires=['pbr'], pbr=True)

Listing 5-4: setup.py using pbr

The setup_requires parameter indicates to setuptools that pbr must be 
installed prior to using setuptools. The pbr=True argument makes sure that 
the pbr extension for setuptools is loaded and called.

Once enabled, the python setup.py command is enhanced with the 
pbr features. Calling python setup.py –version will, for example, return the 
version number of the project based on existing git tags. Running python 
setup.py sdist would create a source tarball with automatically generated 
ChangeLog and AUTHORS files.

The Wheel Format Distribution Standard
For most of Python’s existence, there’s been no official standard distribu-
tion format. While different distribution tools generally use some common 
archive format—even the Egg format introduced by setuptools is just a zip 
file with a different extension—their metadata and package structures are 
incompatible with each other. This problem was compounded when an 
official installation standard was finally defined in PEP 376 that was also 
incompatible with existing formats.

To solve these problems, PEP 427 was written to define a new standard 
for Python distribution packages called Wheel. The reference implementa-
tion of this format is available as a tool, also called Wheel.

Wheel is supported by pip starting with version 1.4. If you’re using 
setuptools and have the Wheel package installed, it automatically integrates 
itself as a setuptools command named bdist_wheel. If you don’t have Wheel 
installed, you can install it using the command pip install wheel. Listing 5-5 
shows some of the output when calling bdist_wheel, abridged for print. 

http://www.python.org/dev/peps/pep-0376/
http://www.python.org/dev/peps/pep-0427/
https://pypi.python.org/pypi/wheel
https://pypi.python.org/pypi/pip


62   Chapter 5

$ python setup.py bdist_wheel
running bdist_wheel
running build
running build_py
creating build/lib
creating build/lib/daiquiri
creating build/lib/daiquiri/tests
copying daiquiri/tests/__init__.py -> build/lib/daiquiri/tests
--snip--
running egg_info
writing requirements to daiquiri.egg-info/requires.txt
writing daiquiri.egg-info/PKG-INFO
writing top-level names to daiquiri.egg-info/top_level.txt
writing dependency_links to daiquiri.egg-info/dependency_links.txt
writing pbr to daiquiri.egg-info/pbr.json
writing manifest file 'daiquiri.egg-info/SOURCES.txt'
installing to build/bdist.macosx-10.12-x86_64/wheel
running install
running install_lib
--snip--

running install_scripts
creating build/bdist.macosx-10.12-x86_64/wheel/daiquiri-1.3.0.dist-info/WHEEL

 creating '/Users/jd/Source/daiquiri/dist/daiquiri-1.3.0-py2.py3-none-any.whl' 
and adding '.' to it
adding 'daiquiri/__init__.py'
adding 'daiquiri/formatter.py'
adding 'daiquiri/handlers.py'

--snip--

Listing 5-5: Calling setup.py bdist_wheel

The bdist_wheel command creates a .whl file in the dist directory . As 
with the Egg format, a Wheel archive is just a zip file with a different exten-
sion. However, Wheel archives do not require installation—you can load and 
run your code just by adding a slash followed by the name of your module:

$ python wheel-0.21.0-py2.py3-none-any.whl/wheel -h
usage: wheel [-h]

             {keygen,sign,unsign,verify,unpack,install,install-
scripts,convert,help}
             --snip--

positional arguments:
--snip--

You might be surprised to learn this is not a feature introduced by the 
Wheel format itself. Python can also run regular zip files, just like with Java’s 
.jar files:

python foobar.zip



Distributing Your Software   63

This is equivalent to:

PYTHONPATH=foobar.zip python -m __main__

In other words, the __main__ module for your program will be automati-
cally imported from __main__.py. You can also import __main__ from a mod-
ule you specify by appending a slash followed by the module name, just as 
with Wheel:

python foobar.zip/mymod

This is equivalent to:

PYTHONPATH=foobar.zip python -m mymod.__main__

One of the advantages of Wheel is that its naming conventions allow you 
to specify whether your distribution is intended for a specific architecture 
and/or Python implementation (CPython, PyPy, Jython, and so on). This is 
particularly useful if you need to distribute modules written in C.

By default, Wheel packages are tied to the major version of Python that you 
used to build them. When called with python2 setup.py bdist_wheel, the pattern 
of a Wheel filename will be something like library-version-py2-none-any.whl.

If your code is compatible with all major Python versions (that is, 
Python 2 and Python 3), you can build a universal Wheel:

python setup.py bdist_wheel --universal

The resulting filename will be different and contains both Python major 
versions—something like library-version-py2.py3-none-any.whl. Building a uni-
versal Wheel avoids ending up with two different Wheels when only one would 
cover both Python major versions.

If you don’t want to pass the --universal flag each time you are building 
a Wheel, you can just add this to your setup.cfg file:

[wheel]
universal=1

If the Wheel you build contains binary programs or libraries (like a 
Python extension written in C), the binary Wheel might not be as portable 
as you imagine. It will work by default on some platforms, such as Darwin 
(macOS) or Microsoft Windows, but it might not work on all Linux distribu-
tions. The PEP 513 (https://www.python.org/dev/peps/pep-0513) targets this 
Linux problem by defining a new platform tag named manylinux1 and a mini-
mal set of libraries that are guaranteed to be available on that platform.

Wheel is a great format for distributing ready-to-install libraries and appli-
cations, so you are encouraged to build and upload them to PyPI as well.

https://www.python.org/dev/peps/pep-0513


64   Chapter 5

Sharing Your Work with the World
Once you have a proper setup.py file, it is easy to build a source tarball that 
can be distributed. The sdist setuptools command does just that, as demon-
strated in Listing 5-6.

$ python setup.py sdist
running sdist

[pbr] Generating AUTHORS
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Processing SOURCES.txt
[pbr] In git context, generating filelist from git
warning: no previously-included files matching '*.pyc' found anywhere in 
distribution
writing manifest file 'ceilometer.egg-info/SOURCES.txt'
running check
copying setup.cfg -> ceilometer-2014.1.a6-g772e1a7
Writing ceilometer-2014.1.a6-g772e1a7/setup.cfg

--snip--

Creating tar archive
removing 'ceilometer-2014.1.a6.g772e1a7' (and everything under it)

Listing 5-6: Using setup.py sdist to build a source tarball

The sdist command creates a tarball under the dist directory of the 
source tree. The tarball contains all the Python modules that are part of 
the source tree. As seen in the previous section, you can also build Wheel 
archives using the bdist_wheel command. Wheel archives are a bit faster to 
install as they’re already in the correct format for installation.

The final step to make that code accessible is to export your package 
somewhere users can install it via pip. That means publishing your project 
to PyPI.

If it’s your first time exporting to PyPI, it pays to test out the publishing 
process in a safe sandbox rather than on the production server. You can 
use the PyPI staging server for this purpose; it replicates all the functional-
ity of the main index but is solely for testing purposes.

The first step is to register your project on the test server. Start by open-
ing your ~/.pypirc file and adding these lines:

[distutils]
index-servers =
    testpypi

http://pypi.python.org/
https://testpypi.python.org/pypi


Distributing Your Software   65

[testpypi]
username = <your username>
password = <your password>
repository = https://testpypi.python.org/pypi

Save the file, and now you can register your project in the index:

$ python setup.py register -r testpypi
running register
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Reusing existing SOURCES.txt
running check
Registering ceilometer to https://testpypi.python.org/pypi
Server response (200): OK

This connects to the test PyPI server instance and creates a new entry. 
Don’t forget to use the -r option; otherwise, the real production PyPI 
instance would be used!

Obviously, if a project with the same name is already registered there, 
the process will fail. Retry with a new name, and once you get your program 
registered and receive the OK response, you can upload a source distribution 
tarball, as shown in Listing 5-7.

$ python setup.py sdist upload -r testpypi
running sdist
[pbr] Writing ChangeLog
[pbr] Generating AUTHORS
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Processing SOURCES.txt
[pbr] In git context, generating filelist from git
warning: no previously-included files matching '*.pyc' found anywhere in 
distribution
writing manifest file 'ceilometer.egg-info/SOURCES.txt'
running check
creating ceilometer-2014.1.a6.g772e1a7

--snip--

copying setup.cfg -> ceilometer-2014.1.a6.g772e1a7
Writing ceilometer-2014.1.a6.g772e1a7/setup.cfg
Creating tar archive
removing 'ceilometer-2014.1.a6.g772e1a7' (and everything under it)
running upload



66   Chapter 5

Submitting dist/ceilometer-2014.1.a6.g772e1a7.tar.gz to https://testpypi 
.python.org/pypi
Server response (200): OK

Listing 5-7: Uploading your tarball to PyPI

Alternatively, you could upload a Wheel archive, as in Listing 5-8.

$ python setup.py bdist_wheel upload -r testpypi
running bdist_wheel
running build
running build_py
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Reusing existing SOURCES.txt
installing to build/bdist.linux-x86_64/wheel
running install
running install_lib
creating build/bdist.linux-x86_64/wheel

--snip--

creating build/bdist.linux-x86_64/wheel/ceilometer-2014.1.a6.g772e1a7 
.dist-info/WHEEL
running upload
Submitting /home/jd/Source/ceilometer/dist/ceilometer-2014.1.a6 
.g772e1a7-py27-none-any.whl to https://testpypi.python.org/pypi
Server response (200): OK

Listing 5-8: Uploading a Wheel archive to PyPI

Once those operations are finished, you and other users can search for 
the uploaded packages on the PyPI staging server, and even install those 
packages using pip, by specifying the test server using the -i option:

$ pip install -i https://testpypi.python.org/pypi ceilometer

If everything checks out, you can upload your project to the main PyPI 
server. Just make sure to add your credentials and the details for the server 
to your ~/.pypirc file first, like so:

[distutils]
index-servers =
    pypi
    testpypi

[pypi]
username = <your username>
password = <your password>

https://testpypi.python.org/pypi


Distributing Your Software   67

[testpypi]
repository = https://testpypi.python.org/pypi
username = <your username>
password = <your password>

Now if you run register and upload with the -r pypi switch, your package 
should be uploaded to PyPI.

n o t e  PyPI can keep several versions of your software in its index, allowing you to install 
specific and older versions, if you ever need to. Just pass the version number to the pip 
install command; for example, pip install foobar==1.0.2.

This process is straightforward to use and allows for any number of 
uploads. You can release your software as often as you want, and your users 
can install and update as often as they need.

Entry Points
You may have already used setuptools entry points without knowing any-
thing about them. Software distributed using setuptools includes important 
metadata describing features such as its required dependencies and—more 
relevantly to this topic—a list of entry points. Entry points are methods by 
which other Python programs can discover the dynamic features a package 
provides.

The following example shows how to provide an entry point named 
rebuildd in the console_scripts entry point group:

#!/usr/bin/python
from distutils.core import setup

setup(name="rebuildd",
    description="Debian packages rebuild tool",
    author="Julien Danjou",
    author_email="acid@debian.org",
    url="http://julien.danjou.info/software/rebuildd.html",
    entry_points={
        'console_scripts': [
            'rebuildd = rebuildd:main',
        ],
    },
    packages=['rebuildd'])

Any Python package can register entry points. Entry points are orga-
nized in groups: each group is made of a list of key and value pairs. Those 
pairs use the format path.to.module:variable_name. In the previous example, 
the key is rebuildd, and the value is rebuildd:main.

The list of entry points can be manipulated using various tools, from 
setuptools to epi, as I’ll show here. In the following sections, we discuss how 
we can use entry points to add extensibility to our software.



68   Chapter 5

Visualizing Entry Points
The easiest way to visualize the entry points available in a package is to 
use a package called entry point inspector. You can install it by running 
pip install entry-point-inspector. When installed, it provides the command 
epi that you can run from your terminal to interactively discover the entry 
points provided by installed packages. Listing 5-9 shows an example of 
running epi group list on my system.

$ epi group list 
---------------------------
| Name                    |
-------------------------- 
| console_scripts | 
| distutils.commands | 
| distutils.setup_keywords | 
| egg_info.writers | 
| epi.commands | 
| flake8.extension | 
| setuptools.file_finders | 
| setuptools.installation |
--------------------------

Listing 5-9: Getting a list of entry point groups

The output from epi group list in Listing 5-9 shows the different pack-
ages on a system that provide entry points. Each item in this table is the 
name of an entry point group. Note that this list includes console_scripts, 
which we’ll discuss shortly. We can use the epi command with the show com-
mand to show details of a particular entry point group, as in Listing 5-10.

$ epi group show console_scripts 
------------------------------------------------- 
| Name     | Module   | Member | Distribution | Error | 
------------------------------------------------- 
| coverage | coverage | main   | coverage 3.4 |       |

Listing 5-10: Showing details of an entry point group

We can see that in the group console_scripts, an entry point named 
coverage refers to the member main of the module coverage. This entry point 
in particular, provided by the package coverage 3.4, indicates which Python 
function to call when the command line script coverage is executed. Here, 
the function coverage.main is to be called.

The epi tool is just a thin layer on top of the complete Python library 
pkg_resources. This module allows us to discover entry points for any Python 
library or program. Entry points are valuable for various things, including 
console scripts and dynamic code discovery, as you’ll see in the next few 
sections.

https://pypi.python.org/pypi/entry_point_inspector


Distributing Your Software   69

Using Console Scripts
When writing a Python application, you almost always have to provide a 
launchable program—a Python script that the end user can run—that 
needs to be installed inside a directory somewhere in the system path.

Most projects have a launchable program similar to this:

#!/usr/bin/python
import sys
import mysoftware

mysoftware.SomeClass(sys.argv).run()

This kind of script is a best-case scenario: many projects have a much 
longer script installed in the system path. However, such scripts pose some 
major issues:

•	 There’s no way the user can know where the Python interpreter is or 
which version it uses.

•	 This script leaks binary code that can’t be imported by software or 
unit tests.

•	 There’s no easy way to define where to install this script.

•	 It’s not obvious how to install this in a portable way (for example, on 
both Unix and Windows).

Helping us circumvent these problems, setuptools offers the console 
_scripts feature. This entry point can be used to make setuptools install 
a tiny program in the system path that calls a specific function in one of 
your modules. With setuptools, you can specify a function call to start your 
program by setting up a key/value pair in the console_scripts entry point 
group: the key is the script name that will be installed, and the value is 
the Python path to your function (something like my_module.main).

Let’s imagine a foobar program that consists of a client and a server. 
Each part is written in its module—foobar.client and foobar.server, respec-
tively, in foobar/client.py:

def main():
    print("Client started")

And in foobar/server.py: 

def main():
    print("Server started")

Of course, this program doesn’t do much of anything—our client and 
server don’t even talk to each other. For our example, though, they just 
need to print a message letting us know they have started successfully.

We can now write the following setup.py file in the root directory with 
entry points defined in setup.py.



70   Chapter 5

from setuptools import setup

setup(
    name="foobar",
    version="1",
    description="Foo!",
    author="Julien Danjou",
    author_email="julien@danjou.info",
    packages=["foobar"],
    entry_points={
        "console_scripts": [

             "foobard = foobar.server:main",
            "foobar = foobar.client:main",
        ],
     },
)

We define entry points using the format module.submodule:function. You 
can see here that we’ve defined an entry point each for both client and 
server .

When python setup.py install is run, setuptools will create a script that 
will look like the one in Listing 5-11.

#!/usr/bin/python
# EASY-INSTALL-ENTRY-SCRIPT: 'foobar==1','console_scripts','foobar'
__requires__ = 'foobar==1'
import sys
from pkg_resources import load_entry_point

if __name__ == '__main__':
    sys.exit(
        load_entry_point('foobar==1', 'console_scripts', 'foobar')()
    )

Listing 5-11: A console script generated by setuptools

This code scans the entry points of the foobar package and retrieves the 
foobar key from the console_scripts group, which is used to locate and run 
the corresponding function. The return value of the load_entry_point will 
then be a reference to the function foobar.client.main, which will be called 
without any arguments and whose return value will be used as an exit code.

Notice that this code uses pkg_resources to discover and load entry point 
files from within your Python programs. 

n o t e  If you’re using pbr on top of setuptools, the generated script is simpler (and therefore 
faster) than the default one built by setuptools, as it will call the function you wrote in 
the entry point without having to search the entry point list dynamically at runtime.

Using console scripts is a technique that removes the burden of writing 
portable scripts, while ensuring that your code stays in your Python pack-
age and can be imported (and tested) by other programs.

http://pythonhosted.org/distribute/pkg_resources.html


Distributing Your Software   71

Using Plugins and Drivers
Entry points make it easy to discover and dynamically load code deployed 
by other packages, but this is not their only use. Any application can pro-
pose and register entry points and groups and then use them as it wishes.

In this section, we’re going to create a cron-style daemon pycrond that 
will allow any Python program to register a command to be run once 
every few seconds by registering an entry point in the group pytimed. The 
attribute indicated by this entry point should be an object that returns 
number_of_seconds, callable.

Here’s our implementation of pycrond using pkg_resources to discover 
entry points, in a program I’ve named pytimed.py:

import pkg_resources
import time

def main():
    seconds_passed = 0
    while True:
        for entry_point in pkg_resources.iter_entry_points('pytimed'):
            try:
                seconds, callable = entry_point.load()()
            except:
                # Ignore failure
                pass
            else:
                if seconds_passed % seconds == 0:
                    callable()
        time.sleep(1)
        seconds_passed += 1

This program consists of an infinite loop that iterates over each entry 
point of the pytimed group. Each entry point is loaded using the load() 
method. The program then calls the returned method, which needs to 
return the number of seconds to wait before calling the callable as well as 
the aforementioned callable.

The program in pytimed.py is a very simplistic and naive implementa-
tion, but it is sufficient for our example. Now we can write another Python 
program, named hello.py, that needs one of its functions called on a periodic 
basis: 

def print_hello():
    print("Hello, world!")

def say_hello():
    return 2, print_hello

Once we have that function defined, we register it using the appropriate 
entry points in setup.py. 



72   Chapter 5

from setuptools import setup

setup(
    name="hello",
    version="1",
    packages=["hello"],
    entry_points={
        "pytimed": [
            "hello = hello:say_hello",
        ],
     },)

The setup.py script registers an entry point in the group pytimed with the 
key hello and the value pointing to the function hello.say_hello. Once that 
package is installed using that setup.py—for example, using pip install—the 
pytimed script can detect the newly added entry point.

At startup, pytimed will scan the group pytimed and find the key hello. It 
will then call the hello.say_hello function, getting two values: the number of 
seconds to wait between each call and the function to call, 2 seconds and 
print_hello in this case. By running the program, as we do in Listing 5-12, 
you can see “Hello, world!” printed on the screen every 2 seconds.

>>> import pytimed
>>> pytimed.main()
Hello, world!
Hello, world!
Hello, world!

Listing 5-12: Running pytimed

The possibilities this mechanism offers are immense: you can build 
driver systems, hook systems, and extensions easily and generically. Imple-
menting this mechanism by hand in every program you make would be 
tedious, but fortunately, there’s a Python library that can take care of the 
boring parts for us.

The stevedore library provides support for dynamic plugins based on 
the same mechanism demonstrated in our previous examples. The use 
case in this example is already simplistic, but we can still simplify it fur-
ther in this script, pytimed_stevedore.py:

from stevedore.extension import ExtensionManager
import time

def main():
    seconds_passed = 0
    extensions = ExtensionManager('pytimed', invoke_on_load=True)
    while True:
        for extension in extensions:
            try:
                seconds, callable = extension.obj



Distributing Your Software   73

            except:
                # Ignore failure
                pass
            else:
                if seconds_passed % seconds == 0:
                    callable()
        time.sleep(1)
        seconds_passed += 1

The ExtensionManager class of stevedore provides a simple way to load all 
extensions of an entry point group. The name is passed as a first argument. 
The argument invoke_on_load=True makes sure that each function of the group 
is called once discovered. This makes the results accessible directly from the 
obj attribute of the extension.

If you look through the stevedore documentation, you will see that 
ExtensionManager has a variety of subclasses that can handle different situa-
tions, such as loading specific extensions based on their names or the result 
of a function. All of those are commonly used models you can apply to 
your program in order to implement those patterns directly.

For example, we might want to load and run only one extension from 
our entry point group. Leveraging the stevedore.driver.DriverManager class 
allows us to do that, as Listing 5-13 shows.

from stevedore.driver import DriverManager
import time

def main(name):
    seconds_passed = 0
    seconds, callable = DriverManager('pytimed', name, invoke_on_load=True).
driver
    while True:
        if seconds_passed % seconds == 0:
            callable()
        time.sleep(1)
        seconds_passed += 1 
 
main("hello")

Listing 5-13: Using stevedore to run a single extension from an entry point

In this case, only one extension is loaded and selected by name. This 
allows us to quickly build a driver system in which only one extension is 
loaded and used by a program.

Summary
The packaging ecosystem in Python has a bumpy history; however, the situ-
ation is now settling. The setuptools library provides a complete solution to 
packaging, not only to transport your code in different formats and upload 
it to PyPI, but also to handle connection with other software and libraries 
via entry points.



74   Chapter 5

Nick Coghlan on Packaging
Nick is a Python core developer working at Red Hat. He has written sev-
eral PEP proposals, including PEP 426 (Metadata for Python Software 
Packages 2.0), and he is acting as delegate for our Benevolent Dictator for 
Life, Guido van Rossum, author of Python.

The number of packaging solutions (distutils, setuptools, distutils2, 
distlib, bento, pbr, and so on) for Python is quite extensive. In your 
opinion, what are the reasons for such fragmentation and divergence?

The short answer is that software publication, distribution, and integra-
tion is a complex problem with plenty of room for multiple solutions 
tailored for different use cases. In my recent talks on this, I have noted 
that the problem is mainly one of age, with the different packaging tools 
being born into different eras of software distribution.

PEP 426, which defines a new metadata format for Python packages, is 
still fairly recent and not yet approved. How do you think it will tackle 
current packaging problems?

PEP 426 originally started as part of the Wheel format definition, but 
Daniel Holth realized that Wheel could work with the existing metadata 
format defined by setuptools. PEP 426 is thus a consolidation of the exist-
ing setuptools metadata with some of the ideas from distutils2 and other 
packaging systems (such as RPM and npm). It addresses some of the frustra-
tions encountered with existing tools (for example, with cleanly separat-
ing different kinds of dependencies).

The main gains will be a REST API on PyPI offering full metadata 
access, as well as (hopefully) the ability to automatically generate distri-
bution policy–compliant packages from upstream metadata.

The Wheel format is somewhat recent and not widely used yet, but it seems 
promising. Why is it not part of the Standard Library?

It turns out the Standard Library is not really a suitable place for 
packaging standards: it evolves too slowly, and an addition to a later 
version of the Standard Library cannot be used with earlier versions 
of Python. So, at the Python language summit earlier this year, we 
tweaked the PEP process to allow distutils-sig to manage the full 
approval cycle for packaging-related PEPs, and python-dev will only be 
involved for proposals that involve changing CPython directly (such 
as pip bootstrapping).

What is the future for Wheel packages?
We still have some tweaks to make before Wheel is suitable for use on 
Linux. However, pip is adopting Wheel as an alternative to the Egg format, 
allowing local caching of builds for fast virtual environment creation, 
and PyPI allows uploads of Wheel archives for Windows and macOS. 



6
U n i t  t e s t i n g

Many find unit testing to be arduous 
and time-consuming, and some people 

and projects have no testing policy. This 
chapter assumes that you see the wisdom of 

unit testing! Writing code that is not tested is fun-
damentally useless, as there’s no way to conclusively 
prove that it works. If you need convincing, I suggest 
you start by reading about the benefits of test-driven 
development. 

In this chapter you’ll learn about the Python tools you can use to con-
struct a comprehensive suite of tests that will make testing simpler and 
more automated. We’ll talk about how you can use tools to make your 
software rock solid and regression-free. We’ll cover creating reusable test 
objects, running tests in parallel, revealing untested code, and using virtual 
environments to make sure your tests are clean, as well as some other good-
practice methods and ideas.



76   Chapter 6

The Basics of Testing
Writing and running unit tests is uncomplicated in Python. The process is 
not intrusive or disruptive, and unit testing will greatly help you and other 
developers in maintaining your software. Here I’ll discuss some of the abso-
lute basics of testing that will make things easier for you. 

Some Simple Tests
First, you should store tests inside a tests submodule of the application or 
library they apply to. Doing so will allow you to ship the tests as part of your 
module so that they can be run or reused by anyone—even after your soft-
ware is installed—without necessarily using the source package. Making 
the tests a submodule of your main module also prevents them from being 
installed by mistake in a top-level tests module.

Using a hierarchy in your test tree that mimics the hierarchy of your 
module tree will make the tests more manageable. This means that the 
tests covering the code of mylib/foobar.py should be stored inside mylib/
tests/test_foobar.py. Consistent nomenclature makes things simpler when 
you’re looking for the tests related to a particular file. Listing 6-1 shows 
the simplest unit test you can write.

def test_true():
    assert True

Listing 6-1: A really simple test in test_true.py

This will simply assert that the behavior of the program is what you 
expect. To run this test, you need to load the test_true.py file and run the 
test_true() function defined within.

However, writing and running an individual test for each of your test 
files and functions would be a pain. For small projects with simple usage, 
the pytest package comes to the rescue—once installed via pip, pytest pro-
vides the pytest command, which loads every file whose name starts with 
test_ and then executes all functions within that start with test_.

With just the test_true.py file in our source tree, running pytest gives us 
the following output:

 $ pytest -v test_true.py
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 --  
/usr/local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 1 item

test_true.py::test_true PASSED                                     [100%]

======================== 1 passed in 0.01 seconds ========================

https://nose.readthedocs.org/


Unit Testing   77

The -v option tells pytest to be verbose and print the name of each 
test run on a separate line. If a test fails, the output changes to indicate 
the failure, accompanied by the whole traceback.

Let’s add a failing test this time, as shown in Listing 6-2.

def test_false():
    assert False

Listing 6-2: A failing test in test_true.py

If we run the test file again, here’s what happens:

 $ pytest -v test_true.py
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 2 items

test_true.py::test_true PASSED                                     [ 50%]
test_true.py::test_false FAILED                                    [100%]

================================ FAILURES ================================
_______________________________ test_false _______________________________

    def test_false():
>       assert False
E       assert False

test_true.py:5: AssertionError
=================== 1 failed, 1 passed in 0.07 seconds ===================

A test fails as soon as an AssertionError exception is raised; our assert 
test will raise an AssertionError when its argument is evaluated to something 
false (False, None, 0, etc.). If any other exception is raised, the test also 
errors out.

Simple, isn’t it? While simplistic, a lot of small projects use this approach 
and it works very well. Those projects require no tools or libraries other than 
pytest and thus can rely on simple assert tests.

As you start to write more sophisticated tests, pytest will help you under-
stand what’s wrong in your failing tests. Imagine the following test:

def test_key():
    a = ['a', 'b']
    b = ['b']
    assert a == b

When pytest is run, it gives the following output:

 $ pytest test_true.py
========================== test session starts ===========================



78   Chapter 6

platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0
rootdir: /Users/jd/Source/python-book/examples, inifile:
plugins: celery-4.1.0
collected 1 item

test_true.py F                                                     [100%]

================================ FAILURES ================================
________________________________ test_key ________________________________

    def test_key():
        a = ['a', 'b']
        b = ['b']
>       assert a == b
E       AssertionError: assert ['a', 'b'] == ['b']
E         At index 0 diff: 'a' != 'b'
E         Left contains more items, first extra item: 'b'
E         Use -v to get the full diff

test_true.py:10: AssertionError
======================== 1 failed in 0.07 seconds ========================

This tells us that a and b are different and that this test does not pass. 
It also tells us exactly how they are different, making it easy to fix the test 
or code.

Skipping Tests
If a test cannot be run, you will probably want to skip that test—for example, 
you may wish to run a test conditionally based on the presence or absence 
of a particular library. To that end, you can use the pytest.skip() func-
tion, which will mark the test as skipped and move on to the next one. The 
pytest.mark.skip decorator skips the decorated test function unconditionally, 
so you’ll use it when a test always needs to be skipped. Listing 6-3 shows how 
to skip a test using these methods.

import pytest

try:
    import mylib
except ImportError:
    mylib = None

@pytest.mark.skip("Do not run this")
def test_fail():
    assert False

@pytest.mark.skipif(mylib is None, reason="mylib is not available")
def test_mylib():
    assert mylib.foobar() == 42



Unit Testing   79

def test_skip_at_runtime():
    if True:
        pytest.skip("Finally I don't want to run it")

Listing 6-3: Skipping tests

When executed, this test file will output the following:

 $ pytest -v examples/test_skip.py
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 3 items

examples/test_skip.py::test_fail SKIPPED                                                      
[ 33%]
examples/test_skip.py::test_mylib SKIPPED                                                     
[ 66%]
examples/test_skip.py::test_skip_at_runtime SKIPPED                                           
[100%]

================= 3 skipped in 0.01 seconds =================

The output of the test run in Listing 6-3 indicates that, in this case, 
all the tests have been skipped. This information allows you to ensure you 
didn’t accidentally skip a test you expected to run.

Running Particular Tests
When using pytest, you often want to run only a particular subset of your 
tests. You can select which tests you want to run by passing their directory or 
files as an argument to the pytest command line. For example, calling pytest 
test_one.py will only run the test_one.py test. Pytest also accepts a directory as 
argument, and in that case, it will recursively scan the directory and run any 
file that matches the test_*.py pattern. 

You can also add a filter with the -k argument on the command line in 
order to execute only the test matching a name, as shown in Listing 6-4.

$ pytest -v examples/test_skip.py -k test_fail
========================== test session starts ===========================
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 3 items

examples/test_skip.py::test_fail SKIPPED                                                                                                                                      
[100%]



80   Chapter 6

=== 2 tests deselected ===
=== 1 skipped, 2 deselected in 0.04 seconds ===

Listing 6-4: Filtering tests run by name

Names are not always the best way to filter which tests will run. Commonly, 
a developer would group tests by functionalities or types instead. Pytest 
provides a dynamic marking system that allows you to mark tests with a key-
word that can be used as a filter. To mark tests in this way, use the -m option. 
If we set up a couple of tests like this:

import pytest

@pytest.mark.dicttest
def test_something():
    a = ['a', 'b']
    assert a == a

def test_something_else():
    assert False

we can use the -m argument with pytest to run only one of those tests:

$ pytest -v test_mark.py -m dicttest
=== test session starts ===
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 -- /usr/
local/opt/python/bin/python3.6
cachedir: .cache
rootdir: examples, inifile:
collected 2 items

test_mark.py::test_something PASSED                                                                                                                                           
[100%]

=== 1 tests deselected ===
=== 1 passed, 1 deselected in 0.01 seconds ===

The -m marker accepts more complex queries, so we can also run all 
tests that are not marked:

$ pytest test_mark.py -m 'not dicttest'
=== test session starts ===
platform darwin -- Python 3.6.4, pytest-3.3.2, py-1.5.2, pluggy-0.6.0
rootdir: examples, inifile:
collected 2 items

test_mark.py F                                                                                                                                                
[100%]

=== FAILURES ===
test_something_else 



Unit Testing   81

    def test_something_else():
>       assert False
E       assert False

test_mark.py:10: AssertionError
=== 1 tests deselected ===
=== 1 failed, 1 deselected in 0.07 seconds ===

Here pytest executed every test that was not marked as dicttest—in this 
case, the test_something_else test, which failed. The remaining marked test, 
test_something, was not executed and so is listed as deselected.

Pytest accepts complex expressions composed of the or, and, and not key-
words, allowing you to do more advanced filtering.

Running Tests in Parallel
Test suites can take a long time to run. It’s not uncommon for a full suite 
of unit tests to take tens of minutes to run in large software projects. By 
default, pytest runs all tests serially, in an undefined order. Since most com-
puters have several CPUs, you can usually speed things up if you split the 
list of tests and run them on multiple CPUs.

To handle this approach, pytest provides the plugin pytest-xdist, which 
you can install with pip. This plugin extends the pytest command line with 
the --numprocesses argument (shortened as -n), which accepts as its argu-
ment the number of CPUs to use. Running pytest -n 4 would run your test 
suite using four parallel processes, balancing the load across the available 
CPUs. 

Because the number of CPUs can change from one computer to 
another, the plugin also accepts the auto keyword as a value. In this case, 
it will probe the machine to retrieve the number of CPUs available and 
start this number of processes. 

Creating Objects Used in Tests with Fixtures
In unit testing, you’ll often need to execute a set of common instructions 
before and after running a test, and those instructions will use certain com-
ponents. For example, you might need an object that represents the con-
figuration state of your application, and you’ll likely want that object to be 
initialized before each test, then reset to its default values when the test is 
achieved. Similarly, if your test relies on the temporary creation of a file, the 
file must be created before the test starts and deleted once the test is done. 
These components, known as fixtures, are set up before a test and cleaned 
up after the test has finished.

With pytest, fixtures are defined as simple functions. The fixture func-
tion should return the desired object(s) so that a test using that fixture can 
use that object. 



82   Chapter 6

Here’s a simple fixture:

import pytest

@pytest.fixture
def database():
    return <some database connection>

def test_insert(database):
    database.insert(123)

The database fixture is automatically used by any test that has database 
in its argument list. The test_insert() function will receive the result of 
the database() function as its first argument and use that result as it wants. 
When we use a fixture this way, we don’t need to repeat the database initial-
ization code several times.

Another common feature of code testing is tearing down after a test 
has used a fixture. For example, you may need to close a database connec-
tion. Implementing the fixture as a generator allows us to add teardown 
functionality, as shown in Listing 6-5.

import pytest

@pytest.fixture
def database():
    db = <some database connection>
    yield db
    db.close()

def test_insert(database):
    database.insert(123)

Listing 6-5: Teardown functionality

Because we used the yield keyword and made database a generator, the 
code after the yield statement runs when the test is done. That code will 
close the database connection at the end of the test.

However, closing a database connection for each test might impose an 
unnecessary runtime cost, as tests may be able to reuse that same connec-
tion. In that case, you can pass the scope argument to the fixture decorator, 
specifying the scope of the fixture:

import pytest

@pytest.fixture(scope="module")
def database():
    db = <some database connection>
    yield db
    db.close()

def test_insert(database):
    database.insert(123)



Unit Testing   83

By specifying the scope="module" parameter, you initialize the fixture 
once for the whole module, and the same database connection will be 
passed to all test functions requesting a database connection.

Finally, you can run some common code before and after your tests by 
marking fixtures as automatically used with the autouse keyword, rather than 
specifying them as an argument for each of the test functions. Specifying 
the autouse=True keyword argument to the pytest.fixture() function will 
make sure the fixture is called before running any test in the module or 
class it is defined in, as in this example:

import os

import pytest

@pytest.fixture(autouse=True)
def change_user_env():
    curuser = os.environ.get("USER")
    os.environ["USER"] = "foobar"
    yield
    os.environ["USER"] = curuser

def test_user():
    assert os.getenv("USER") == "foobar"

Such automatically enabled features are handy, but make sure not to 
abuse fixtures: they are run before each and every test covered by their 
scope, so they can slow down a test run significantly.

Running Test Scenarios
When unit testing, you may want to run the same error-handling test with 
several different objects that trigger that error, or you may want to run an 
entire test suite against different drivers.

We relied heavily on this latter approach when developing Gnocchi, a 
time series database. Gnocchi provides an abstract class that we call the 
storage API. Any Python class can implement this abstract base and regis-
ter itself to become a driver. The software loads the configured storage 
driver when required and uses the implemented storage API to store or 
retrieve data. In this case, we need a class of unit tests that runs against 
each driver—thus running against each implementation of this storage 
API—to be sure all drivers conform to what the callers expect.

An easy way to achieve this is by using parameterized fixtures, which will 
run all the tests that use them several times, once for each of the defined 
parameters. Listing 6-6 shows an example of using parameterized fixtures 
to run a single test twice with different parameters: once for mysql and once 
for postgresql.

import pytest
import myapp

http://gnocchi.xyz/


84   Chapter 6

@pytest.fixture(params=["mysql", "postgresql"])
def database(request):
    d = myapp.driver(request.param)
    d.start()
    yield d
    d.stop()

def test_insert(database):
    database.insert("somedata")

Listing 6-6: Running a test using parameterized fixtures 

In Listing 6-6, the driver fixture is parameterized with two different 
values, each the name of a database driver that is supported by the applica-
tion. When test_insert is run, it is actually run twice: once with a MySQL 
database connection and once with a PostgreSQL database connection. 
This allows us to easily reuse the same test with different scenarios, without 
adding many lines of code.

Controlled Tests Using Mocking
Mock objects are simulated objects that mimic the behavior of real appli-
cation objects, but in particular and controlled ways. These are especially 
useful in creating environments that describe precisely the conditions for 
which you would like to test code. You can replace all objects but one with 
mock objects to isolate the behavior of your focus object and create an envi-
roment for testing your code. 

One use case is in writing an HTTP client, since it is likely impossible 
(or at least extremely complicated) to spawn the HTTP server and test it 
through all scenarios to return every possible value. HTTP clients are espe-
cially difficult to test for all failure scenarios. 

The standard library for creating mock objects in Python is mock. Starting 
with Python 3.3, mock has been merged into the Python Standard Library as 
unittest.mock. You can, therefore, use a snippet like the following to maintain 
backward compatibility between Python 3.3 and earlier versions:

try:
    from unittest import mock
except ImportError:
    import mock

The mock library is pretty simple to use. Any attribute accessed on a 
mock.Mock object is dynamically created at runtime. Any value can be set to 
such an attribute. Listing 6-7 shows mock being used to create a fake object 
with a fake attribute.

>>> from unittest import mock
>>> m = mock.Mock()
>>> m.some_attribute = "hello world"

https://pypi.python.org/pypi/mock/1.0.1


Unit Testing   85

>>> m.some_attribute
"hello world"

Listing 6-7: Accessing the mock.Mock attribute

You can also dynamically create a method on a malleable object, as 
in Listing 6-8 where we create a fake method that always returns 42 and 
accepts anything as an argument.

>>> from unittest import mock
>>> m = mock.Mock()
>>> m.some_method.return_value = 42
>>> m.some_method()
42
>>> m.some_method("with", "arguments")
42

Listing 6-8: Creating methods on a mock.Mock object

In just a few lines, your mock.Mock object now has a some_method() method 
that returns 42. It accepts any kind of argument, and there is no check on 
what the values are—yet.

Dynamically created methods can also have (intentional) side effects. 
Rather than being boilerplate methods that just return a value, they can be 
defined to execute useful code.

Listing 6-9 creates a fake method that has the side effect of printing the 
"hello world" string.

>>> from unittest import mock
>>> m = mock.Mock()
>>> def print_hello():
...     print("hello world!")
...     return 43
...

 >>> m.some_method.side_effect = print_hello
>>> m.some_method()
hello world!
43

 >>> m.some_method.call_count
1

Listing 6-9: Creating methods on a mock.Mock object with side effects

We assign an entire function to the some_method attribute . This tech-
nique allows us to implement more complex scenarios in a test because we 
can plug any code needed for testing into a mock object. We then just need 
to pass this mock object to whichever function expects it.

The call_count attribute  is a simple way of checking the number of 
times a method has been called. 



86   Chapter 6

The mock library uses the action/assertion pattern: this means that once 
your test has run, it’s up to you to check that the actions you are mocking 
were correctly executed. Listing 6-10 applies the assert() method to our 
mock objects to perform these checks.

>>> from unittest import mock
>>> m = mock.Mock()

 >>> m.some_method('foo', 'bar')
<Mock name='mock.some_method()' id='26144272'>

 >>> m.some_method.assert_called_once_with('foo', 'bar')
>>> m.some_method.assert_called_once_with('foo', wmock.ANY)
>>> m.some_method.assert_called_once_with('foo', 'baz')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in assert_called_
once_with
    return self.assert_called_with(*args, **kwargs)
  File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in assert_called_
with
    raise AssertionError(msg)
AssertionError: Expected call: some_method('foo', 'baz')
Actual call: some_method('foo', 'bar')

Listing 6-10: Checking method calls

We create a method with the arguments foo and bar to stand in as our 
tests by calling the method . The usual way to check calls to a mock object 
is to use the assert_called() methods, such as assert_called_once_with() . 
To these methods, you need to pass the values that you expect callers to use 
when calling your mock method. If the values passed are not the ones being 
used, then mock raises an AssertionError. If you don’t know what arguments 
may be passed, you can use mock.ANY as a value w; that will match any argu-
ment passed to your mock method.

Th mock library can also be used to patch some function, method, or 
object from an external module. In Listing 6-11, we replace the os.unlink() 
function with a fake function we provide.

>>> from unittest import mock
>>> import os
>>> def fake_os_unlink(path):
...     raise IOError("Testing!")
...
>>> with mock.patch('os.unlink', fake_os_unlink):
...     os.unlink('foobar')
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
  File "<stdin>", line 2, in fake_os_unlink
IOError: Testing!

Listing 6-11: Using mock.patch



Unit Testing   87

When used as a context manager, mock.patch() replaces the target func-
tion with the function we provide so the code executed inside the context 
uses that patched method. With the mock.patch() method, it’s possible to 
change any part of an external piece of code, making it behave in a way 
that lets you test all conditions in your application, as shown in Listing 6-12.

from unittest import mock

import pytest
import requests

class WhereIsPythonError(Exception):
    pass

 def is_python_still_a_programming_language():
    try:
        r = requests.get("http://python.org")
    except IOError:
        pass
    else:
        if r.status_code == 200:
            return 'Python is a programming language' in r.content
    raise WhereIsPythonError("Something bad happened")

def get_fake_get(status_code, content):
    m = mock.Mock()
    m.status_code = status_code
    m.content = content

    def fake_get(url):
        return m

    return fake_get

def raise_get(url):
    raise IOError("Unable to fetch url %s" % url)

 @mock.patch('requests.get', get_fake_get(
    200, 'Python is a programming language for sure'))
def test_python_is():
    assert is_python_still_a_programming_language() is True

@mock.patch('requests.get', get_fake_get(
    200, 'Python is no more a programming language'))
def test_python_is_not():
    assert is_python_still_a_programming_language() is False

@mock.patch('requests.get', get_fake_get(404, 'Whatever'))
def test_bad_status_code():
    with pytest.raises(WhereIsPythonError):
        is_python_still_a_programming_language()

@mock.patch('requests.get', raise_get)
def test_ioerror():



88   Chapter 6

    with pytest.raises(WhereIsPythonError):
        is_python_still_a_programming_language()

Listing 6-12: Using mock.patch() to test a set of behaviors

Listing 6-12 implements a test suite that searches for all instances of the 
string “Python is a programming language” on the http://python.org/ web 
page . There is no way to test negative scenarios (where this sentence is not 
on the web page) without modifying the page itself—something we’re not 
able to do, obviously. In this case, we’re using mock to cheat and change the 
behavior of the request so it returns a mocked reply with a fake page that 
doesn’t contain that string. This allows us to test the negative scenario in 
which http://python.org/ does not contain this sentence, making sure the pro-
gram handles that case correctly.

This example uses the decorator version of mock.patch() . Using the 
decorator does not change the mocking behavior, but it is simpler when you 
need to use mocking within the context of an entire test function.

Using mocking, we can simulate any problem, such as a web server 
returning a 404 error, an I/O error, or a network latency issue. We can 
make sure code returns the correct values or raises the correct exception 
in every case, ensuring our code always behaves as expected.

Revealing Untested Code with coverage
A great complement to unit testing, the coverage tool identifies whether any 
of your code has been missed during testing. It uses code analysis tools and 
tracing hooks to determine which lines of your code have been executed; 
when used during a unit test run, it can show you which parts of your code-
base have been crossed over and which parts have not. Writing tests is use-
ful, but having a way to know what part of your code you may have missed 
during the testing process is the cherry on the cake.

Install the coverage Python module on your system via pip to have access 
to the coverage program command from your shell. 

n o t e  The command may also be named python-coverage, if you install coverage through 
your operating system installation software. This is the case on Debian, for example.

Using coverage in stand-alone mode is straightforward. It can show you 
parts of your programs that are never run and which code might be “dead 
code,” that is, code that could be removed without modifying the normal 
workflow of the program. All the test tools we’ve talked about so far in this 
chapter are integrated with coverage.

https://pypi.python.org/pypi/coverage


Unit Testing   89

When using pytest, just install the pytest-cov plugin via pip install 
pytest-pycov and add a few option switches to generate a detailed code 
coverage output, as shown in Listing 6-13.

$ pytest --cov=gnocchiclient gnocchiclient/tests/unit
---------- coverage: platform darwin, python 3.6.4-final-0 -----------
Name                                          Stmts   Miss Branch BrPart  Cover
---------------------------
gnocchiclient/__init__.py                         0      0      0      0   100%
gnocchiclient/auth.py                            51     23      6      0    49%
gnocchiclient/benchmark.py                      175    175     36      0     0%
--snip--
---------------------------
TOTAL                                          2040   1868    424      6     8%

=== passed in 5.00 seconds ===

Listing 6-13: Using coverage with pytest

The --cov option enables the coverage report at the end of the test run. 
You need to pass the package name as an argument for the plugin to filter 
the coverage report properly. The output includes the lines of code that 
were not run and therefore have no tests. All you need to do now is spawn 
your favorite text editor and start writing tests for that code.

However, coverage goes one better, allowing you to generate clear 
HTML reports. Simply add the --cov-report=html flag, and the htmlcov 
directory from which you ran the command will be populated with 
HTML pages. Each page will show you which parts of your source code 
were or were not run.

If you want to be that person, you can use the option --cover-fail 
-under=COVER_MIN_PERCENTAGE, which will make the test suite fail if a mini-
mum percentage of the code is not executed when the test suite is run. 
While having a good coverage percentage is a decent goal, and while the 
tool is useful to gain insight into the state of your test coverage, defining 
an arbitrary percentage value does not provide much insight. Figure 6-1 
shows an example of a coverage report with the percentage at the top.

For example, a code coverage score of 100 percent is a respectable goal, 
but it does not necessarily mean the code is entirely tested and you can rest. 
It only proves that your whole code path has been run; there is no indica-
tion that every possible condition has been tested. 

You should use coverage information to consolidate your test suite and 
add tests for any code that is currently not being run. This facilitates later 
project maintenance and increases your code’s overall quality.



90   Chapter 6

Figure 6-1: Coverage of ceilometer.publisher

Virtual Environments
Earlier we mentioned the danger that your tests may not capture the 
absence of dependencies. Any application of significant size inevitably 
depends on external libraries to provide features the application needs, 
but there are many ways external libraries might cause issues on your 
operating system. Here are a few:

•	 Your system does not have the library you need packaged.

•	 Your system does not have the right version of the library you need 
packaged.

•	 You need two different versions of the same library for two different 
applications.

These problems can happen when you first deploy your application or 
later on, while it’s running. Upgrading a Python library installed via your 



Unit Testing   91

system manager might break your application in a snap without warning, 
for reasons as simple as an API change in the library being used by the 
application.

The solution is for each application to use a library directory that con-
tains all the application’s dependencies. This directory is then used to load 
the needed Python modules rather than the system-installed ones.

Such a directory is known as a virtual environment. 

Setting Up a Virtual Environment
The tool virtualenv handles virtual environments automatically for you. 
Until Python 3.2, you’ll find it in the virtualenv package that you can install 
using pip install virtualenv. If you use Python 3.3 or later, it’s available 
directly via Python under the venv name.

To use the module, load it as the main program with a destination 
directory as its argument, like so:

$ python3 -m venv myvenv
$ ls myvenv
bin        include    lib        pyvenv.cfg

Once run, venv creates a lib/pythonX.Y directory and uses it to install pip 
into the virtual environment, which will be useful to install further Python 
packages.

You can then activate the virtual environment by “sourcing” the activate 
command. Use the following on Posix systems:

$ source myvenv/bin/activate

On Windows systems, use this code:

> \myvenv\Scripts\activate

Once you do that, your shell prompt should appear prefixed by the 
name of your virtual environment. Executing python will call the version of 
Python that has been copied into the virtual environment. You can check 
that it’s working by reading the sys.path variable and checking that it has 
your virtual environment directory as its first component.

You can stop and leave the virtual environment at any time by calling 
the deactivate command:

$ deactivate

That’s it. Also note that you are not forced to run activate if you want to 
use the Python installed in your virtual environment just once. Calling the 
python binary will also work:

$ myvenv/bin/python



92   Chapter 6

Now, while we’re in our activated virtual environment, we do not have 
access to any of the modules installed and available on the main system. 
That is the point of using a virtual environment, but it does mean we prob-
ably need to install the packages we need. To do that, use the standard pip 
command to install each package, and the packages will install in the right 
place, without changing anything about your system:

$ source myvenv/bin/activate
(myvenv) $ pip install six
Downloading/unpacking six
  Downloading six-1.4.1.tar.gz
  Running setup.py egg_info for package six

Installing collected packages: six
  Running setup.py install for six

Successfully installed six
Cleaning up...

Voilà! We can install all the libraries we need and then run our applica-
tion from this virtual environment, without breaking our system. It’s easy to 
see how we can script this to automate the installation of a virtual environ-
ment based on a list of dependencies, as in Listing 6-14.

virtualenv myappvenv
source myappvenv/bin/activate
pip install -r requirements.txt
deactivate

Listing 6-14: Automatic virtual environment creation

It can still be useful to have access to your system-installed packages, 
so virtualenv allows you to enable them when creating your virtual environ-
ment by passing the --system-site-packages flag to the virtualenv command.

Inside myvenv, you will find a pyvenv.cfg, the configuration file for this 
environment. It doesn’t have a lot of configuration options by default. You 
should recognize include-system-site-package, whose purpose is the same as 
the --system-site-packages of virtualenv that we described earlier.

As you might guess, virtual environments are incredibly useful for auto-
mated runs of unit test suites. Their use is so widespread that a particular 
tool has been built to address it.

Using virtualenv with tox
One of the central uses of virtual environments is to provide a clean environ-
ment for running unit tests. It would be detrimental if you were under the 
impression that your tests were working, when they were not, for example, 
respecting the dependency list. 



Unit Testing   93

One way to ensure you’re accounting for all the dependencies would be 
to write a script to deploy a virtual environment, install setuptools, and then 
install all of the dependencies required for both your application/library 
runtime and unit tests. Luckily, this is such a popular use case that an appli-
cation dedicated to this task has already been built: tox.

The tox management tool aims to automate and standardize how tests 
are run in Python. To that end, it provides everything needed to run an 
entire test suite in a clean virtual environment, while also installing your 
application to check that the installation works.

Before using tox, you need to provide a configuration file named tox.ini 
that should be placed in the root directory of your project, beside your 
setup.py file:

$ touch tox.ini

You can then run tox successfully:

% tox
GLOB sdist-make: /home/jd/project/setup.py
python create: /home/jd/project/.tox/python
python inst: /home/jd/project/.tox/dist/project-1.zip
____________________ summary _____________________
  python: commands succeeded
  congratulations :)

In this instance, tox creates a virtual environment in .tox/python using 
the default Python version. It uses setup.py to create a distribution of your 
package, which it then installs inside this virtual environment. No com-
mands are run, because we did not specify any in the configuration file. 
This alone is not particularly useful.

We can change this default behavior by adding a command to run 
inside our test environment. Edit tox.ini to include the following:

[testenv]
commands=pytest

Now tox runs the command pytest. However, since we do not have pytest 
installed in the virtual environment, this command will likely fail. We need 
to list pytest as a dependency to be installed:

[testenv]
deps=pytest
commands=pytest

When run now, tox re-creates the environment, installs the new depen-
dency, and runs the command pytest, which executes all of the unit tests. 
To add more dependencies, you can either list them in the deps configura-
tion option, as is done here, or use the -rfile syntax to read from a file.



94   Chapter 6

Re-creating an Environment
Sometimes you’ll need to re-create an environment to, for example, ensure 
things work as expected when a new developer clones the source code 
repository and runs tox for the first time. For this, tox accepts a --recreate 
option that will rebuild the virtual environment from scratch based on 
parameters you lay out. 

You define the parameters for all virtual environments managed by tox 
in the [testenv] section of tox.ini. And, as mentioned, tox can manage mul-
tiple Python virtual environments—indeed, it is possible to run our tests 
under a Python version other than the default one by passing the -e flag to 
tox, like so:

 % tox -e py26 
 GLOB sdist-make: /home/jd/project/setup.py
 py26 create: /home/jd/project/.tox/py26
 py26 installdeps: nose
 py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip
 py26 runtests: commands[0] | pytests
 --snip--
== test session starts ==
=== 5 passed in 4.87 seconds ====

By default, tox simulates any environment that matches an existing 
Python version: py24, py25, py26, py27, py30, py31, py32, py33, py34, py35, py36, 
py37, jython, and pypy! Furthermore, you can define your own environments. 
You just need to add another section named [testenv:_envname_]. If you want 
to run a particular command for just one of the environments, you can do 
so easily by listing the following in the tox.ini file:

[testenv]
deps=pytest
commands=pytest

[testenv:py36-coverage]
deps={[testenv]deps}
      pytest-cov
commands=pytest --cov=myproject

By using pytest --cov=myproject under the py36-coverage section as shown 
here, you override the commands for the py36-coverage environment, mean-
ing when you run tox -e py36-coverage, pytest is installed as part of the 
dependencies, but the command pytest is actually run instead with the cov-
erage option. For that to work, the pytest-cov extension must be installed: 
to this end, we replace the deps value with the deps from testenv and add the 
pytest-cov dependency. Variable interpolation is also supported by tox, so 
you can refer to any other field from the tox.ini file and use it as a variable, 
the syntax being {[env_name]variable_name}. This allows us to avoid repeat-
ing the same things over and over again.



Unit Testing   95

Using Different Python Versions 
We can also create a new environment with an unsupported version of 
Python right away with the following in tox.ini:

[testenv]
deps=pytest
commands=pytest

[testenv:py21]
basepython=python2.1

When we run this, it will now (attempt to) use Python 2.1 to run the 
test suite—although since it is very unlikely you have this ancient Python 
version installed on your system, I doubt this would work for you!

It’s likely that you’ll want to support multiple Python versions, in which 
case it would be useful to have tox run all the tests for all the Python ver-
sions you want to support by default. You can do this by specifying the envi-
ronment list you want to use when tox is run without arguments:

[tox]
envlist=py35,py36,pypy

[testenv]
deps=pytest
commands=pytest

When tox is launched without any further arguments, all four environ-
ments listed are created, populated with the dependencies and the applica-
tion, and then run with the command pytest.

Integrating Other Tests
We can also use tox to integrate tests like flake8, as discussed in Chapter 1. 
The following tox.ini file provides a PEP 8 environment that will install flake8 
and run it: 

[tox]
envlist=py35,py36,pypy,pep8

[testenv]
deps=pytest
commands=pytest

[testenv:pep8]
deps=flake8
commands=flake8

In this case, the pep8 environment is run using the default version of 
Python, which is probably fine, though you can still specify the basepython 
option if you want to change that. 



96   Chapter 6

When running tox, you’ll notice that all the environments are built 
and run sequentially. This can make the process very long, but since virtual 
environments are isolated, nothing prevents you from running tox com-
mands in parallel. This is exactly what the detox package does, by providing 
a detox command that runs all of the default environments from envlist in 
parallel. You should pip install it!

Testing Policy 
Embedding testing code in your project is an excellent idea, but how that 
code is run is also extremely important. Too many projects have test code 
lying around that fails to run for some reason or other. This topic is not 
strictly limited to Python, but I consider it important enough to emphasize 
here: you should have a zero-tolerance policy regarding untested code. No 
code should be merged without a proper set of unit tests to cover it.

The minimum you should aim for is that each of the commits you push 
passes all the tests. Automating this process is even better. For example, 
OpenStack relies on a specific workflow based on Gerrit (a web-based code 
review service) and Zuul (a continuous integration and delivery service). Each 
commit pushed goes through the code review system provided by Gerrit, and 
Zuul is in charge of running a set of testing jobs. Zuul runs the unit tests and 
various higher-level functional tests for each project. This code review, which 
is executed by a couple of developers, makes sure all code committed has 
associated unit tests.

If you’re using the popular GitHub hosting service, Travis CI is a 
tool that allows you to run tests after each push or merge or against pull 
requests that are submitted. While it is unfortunate that this testing is done 
post-push, it’s still a fantastic way to track regressions. Travis supports all 
significant Python versions out of the box, and it can be customized signifi-
cantly. Once you’ve activated Travis on your project via the web interface 
at https://www.travis-ci.org/, just add a .travis.yml file that will determine how 
the tests are run. Listing 6-15 shows an example of a .travis.yml file.

language: python
python:
  - "2.7"
  - "3.6"
# command to install dependencies
install: "pip install -r requirements.txt --use-mirrors"
# command to run tests
script: pytest

Listing 6-15: A .travis.yml example file

With this file in place in your code repository and Travis enabled, the 
latter will spawn a set of jobs to test your code with the associated unit tests. 
It’s easy to see how you can customize this by simply adding dependencies 
and tests. Travis is a paid service, but the good news is that for open source 
projects, it’s entirely free!

https://travis-ci.org/


Unit Testing   97

The tox-travis package (https://pypi.python.org/pypi/tox-travis/) is also 
worth looking into, as it will polish the integration between tox and Travis 
by running the correct tox target depending on the Travis environment 
being used. Listing 6-16 shows an example of a .travis.yml file that will 
install tox-travis before running tox.

sudo: false
language: python
python:
  - "2.7"
  - "3.4"
install: pip install tox-travis
script: tox

Listing 6-16: A .travis.yml example file with tox-travis

Using tox-travis, you can simply call tox as the script on Travis, and 
it will call tox with the environment you specify here in the .travis.yml file, 
building the necessary virtual environment, installing the dependency, and 
running the commands you specified in tox.ini. This makes it easy to use the 
same workflow both on your local development machine and on the Travis 
continuous integration platform.

These days, wherever your code is hosted, it is always possible to apply 
some automatic testing of your software and to make sure your project is 
moving forward, not being held back by the addition of bugs.

Robert Collins on Testing
Robert Collins is, among other things, the original author of the Bazaar dis-
tributed version control system. Today, he is a Distinguished Technologist 
at HP Cloud Services, where he works on OpenStack. Robert is also the 
author of many of the Python tools described in this book, such as fixtures, 
testscenarios, testrepository, and even python-subunit—you may have used 
one of his programs without knowing it!

What kind of testing policy would you advise using? Is it ever acceptable 
not to test code?

I think testing is an engineering trade-off: you must consider the likeli-
hood of a failure slipping through to production undetected, the cost 
and size of an undetected failure, and cohesion of the team doing 
the work. Take OpenStack, which has 1,600 contributors: it’s difficult 
to work with a nuanced policy with so many people with their own 
opinions. Generally speaking, a project needs some automated testing 
to check that the code will do what it is intended to do, and that what it 
is intended to do is what is needed. Often that requires functional tests 
that might be in different codebases. Unit tests are excellent for speed 
and pinning down corner cases. I think it is okay to vary the balance 
between styles of testing, as long as there is testing.

https://pypi.python.org/pypi/tox-travis
http://bazaar.canonical.com/
http://openstack.org/


98   Chapter 6

Where the cost of testing is very high and the returns are very low, 
I think it’s fine to make an informed decision not to test, but that situa-
tion is relatively rare: most things can be tested reasonably cheaply, and 
the benefit of catching errors early is usually quite high.

What are the best strategies when writing Python code to make testing 
manageable and improve the quality of the code?

Separate out concerns and don’t do multiple things in one place; this 
makes reuse natural, and that makes it easier to put test doubles in 
place. Take a purely functional approach when possible; for example, 
in a single method either calculate something or change some state, 
but avoid doing both. That way you can test all of the calculating 
behaviors without dealing with state changes, such as writing to a 
database or talking to an HTTP server. The benefit works the other 
way around too—you can replace the calculation logic for tests to pro-
voke corner case behavior and use mocks and test doubles to check 
that the expected state propagation happens as desired. The most 
heinous things to test are deeply layered stacks with complex cross-
layer behavioral dependencies. There you want to evolve the code so 
that the contract between layers is simple, predictable, and—most use-
fully for testing—replaceable.

What’s the best way to organize unit tests in source code?
Have a clear hierarchy, like $ROOT/$PACKAGE/tests. I tend to do just 
one hierarchy for a whole source tree, for example $ROOT/$PACKAGE/ 
$SUBPACKAGE/tests.

Within tests, I often mirror the structure of the rest of the source 
tree: $ROOT/$PACKAGE/foo.py would be tested in $ROOT/$PACKAGE/
tests/test_foo.py.

The rest of the tree should not import from the tests tree, except 
perhaps in the case of a test_suite/load_tests function in the top level 
__init__. This permits you to easily detach the tests for small-footprint 
installations.

What do you see as the future of unit-testing libraries and frameworks in 
Python?

The significant challenges I see are these:

•	 The continued expansion of parallel capabilities in new machines, like 
phones with four CPUs. Existing unit test internal APIs are not opti-
mized for parallel workloads. My work on the StreamResult Java class is 
aimed directly at resolving this.

•	 More complex scheduling support—a less ugly solution for the problems 
that class and module-scoped setup aim at.

•	 Finding some way to consolidate the vast variety of frameworks we have 
today: for integration testing, it would be great to be able to get a con-
solidated view across multiple projects that have different test runners 
in use.



7
M e t h o d s  a n d  d e c o r a t o r s

Python’s decorators are a handy way 
to modify functions. Decorators were 

first introduced in Python 2.2, with the 
classmethod() and staticmethod() decorators, 

but were overhauled to become more flexible and 
readable. Along with these two original decorators, 
Python now provides a few right out of the box and 
supports the simple creation of custom decorators. 
But it seems as though most developers do not under-
stand how they work behind the scenes. 

This chapter aims to change that—we’ll cover what a decorator is and 
how to use it, as well as how to create your own decorators. Then we’ll look 
at using decorators to create static, class, and abstract methods and take a 
close look at the super() function, which allows you to place implementable 
code inside an abstract method. 



100   Chapter 7

Decorators and When to Use Them
A decorator is a function that takes another function as an argument and 
replaces it with a new, modified function. The primary use case for decora-
tors is in factoring common code that needs to be called before, after, or 
around multiple functions. If you’ve ever written Emacs Lisp code, you may 
have used the defadvice decorator, which allows you to define code called 
around a function. If you’ve used method combinations in the Common 
Lisp Object System (CLOS), Python decorators follow the same concepts. 
We’ll look at some simple decorator definitions, and then we’ll examine 
some common situations in which you’d use decorators.

Creating Decorators
The odds are good that you’ve already used decorators to make your own 
wrapper functions. The dullest possible decorator, and the simplest example, 
is the identity() function, which does nothing except return the original 
function. Here is its definition:

def identity(f):
    return f

You would then use your decorator like this:

@identity
def foo():
    return 'bar'

You enter the name of the decorator preceded by an @ symbol and then 
enter the function you want to use it on. This is the same as writing the 
following:

def foo():
    return 'bar'
foo = identity(foo)

This decorator is useless, but it works. Let’s look at another, more useful 
example in Listing 7-1.

_functions = {}
def register(f):
    global _functions
    _functions[f.__name__] = f
    return f
@register
def foo():
    return 'bar'

Listing 7-1: A decorator to organize functions in a dictionary



Methods and Decorators   101

In Listing 7-1, the register decorator stores the decorated function 
name into a dictionary. The _functions dictionary can then be used and 
accessed using the function name to retrieve a function: _functions['foo'] 
points to the foo() function.

In the following sections, I will explain how to write your own decora-
tors. Then I’ll cover how the built-in decorators provided by Python work 
and explain how (and when) to use them. 

Writing Decorators
As mentioned, decorators are often used when refactoring repeated code 
around functions. Consider the following set of functions that need to check 
whether the username they receive as an argument is the admin or not and, 
if the user is not an admin, raise an exception:

class Store(object):
    def get_food(self, username, food):
        if username != 'admin':
            raise Exception("This user is not allowed to get food")
        return self.storage.get(food)

    def put_food(self, username, food):
        if username != 'admin':
            raise Exception("This user is not allowed to put food")
        self.storage.put(food)

We can see there’s some repeated code here. The obvious first step to 
making this code more efficient is to factor the code that checks for admin 
status:

u def check_is_admin(username):
    if username != 'admin':
        raise Exception("This user is not allowed to get or put food")

class Store(object):
    def get_food(self, username, food):
        check_is_admin(username)
        return self.storage.get(food)

    def put_food(self, username, food):
        check_is_admin(username)
        self.storage.put(food)

We’ve moved the checking code into its own function u. Now our code 
looks a bit cleaner, but we can do even better if we use a decorator, as shown 
in Listing 7-2.

def check_is_admin(f):
    u def wrapper(*args, **kwargs):

        if kwargs.get('username') != 'admin':
            raise Exception("This user is not allowed to get or put food")
        return f(*args, **kwargs)



102   Chapter 7

    return wrapper

class Store(object):
    @check_is_admin
    def get_food(self, username=None, food=None):
        return self.storage.get(food)

    @check_is_admin
    def put_food(self, username=None, food=None):
        self.storage.put(food)

Listing 7-2: Adding a decorator to the factored code

We define our check_is_admin decorator u and then call it whenever 
we need to check for access rights. The decorator inspects the arguments 
passed to the function using the kwargs variable and retrieves the user-
name argument, performing the username check before calling the actual 
function. Using decorators like this makes it easier to manage common 
functionality. 

Stacking Decorators
You can also use several decorators on top of a single function or method, 
as shown in Listing 7-3.

def check_user_is_not(username): 
    def user_check_decorator(f):
        def wrapper(*args, **kwargs):
            if kwargs.get('username') == username:
                raise Exception("This user is not allowed to get food")
            return f(*args, **kwargs) 
        return wrapper
    return user_check_decorator

class Store(object):
    @check_user_is_not("admin")
    @check_user_is_not("user123")
    def get_food(self, username, food):
        return self.storage.get(food)

Listing 7-3: Using more than one decorator with a single function

Here, check_user_is_not() is a factory function for our decorator user 
_check_decorator(). It creates a function decorator that depends on the 
username variable and then returns that variable. The function user_check 
_decorator() will serve as a function decorator for get_food().

The function get_food() gets decorated twice using check_user_is_not(). 
The question here is which username should be checked first—admin or 
user123? The answer is in the following code, where I translated Listing 7-3 
into equivalent code without using a decorator.



Methods and Decorators   103

class Store(object):
    def get_food(self, username, food):
        return self.storage.get(food)

Store.get_food = check_user_is_not("user123")(Store.get_food)
Store.get_food = check_user_is_not("admin")(Store.get_food)

The decorator list is applied from top to bottom, so the decorators 
closest to the def keyword will be applied first and executed last. In the 
example above, the program will check for admin first and then for user123.

Writing Class Decorators
It’s also possible to implement class decorators, though these are less often 
used in the wild. Class decorators work in the same way as function decora-
tors, but they act on classes rather than functions. The following is an 
example of a class decorator that sets attributes for two classes:

import uuid

def set_class_name_and_id(klass):
    klass.name = str(klass)
    klass.random_id = uuid.uuid4()
    return klass

@set_class_name_and_id
class SomeClass(object):
    pass

When the class is loaded and defined, it will set the name and random_id 
attributes, like so:

>>> SomeClass.name
"<class '__main__.SomeClass'>"
>>> SomeClass.random_id
UUID('d244dc42-f0ca-451c-9670-732dc32417cd')

As with function decorators, this can be handy for factorizing common 
code that manipulates classes.

Another possible use for class decorators is to wrap a function or class 
with classes. For example, class decorators are often used for wrapping a 
function that’s storing a state. The following example wraps the print() func-
tion to check how many times it has been called in a session:

class CountCalls(object):
    def __init__(self, f):
        self.f = f
        self.called = 0



104   Chapter 7

    def __call__(self, *args, **kwargs):
        self.called += 1
        return self.f(*args, **kwargs)

@CountCalls
def print_hello():
    print("hello")

We can then use this to check how many times the function print_hello() 
has been called:

>>> print_hello.called
0
>>> print_hello()
hello
>>> print_hello.called
1

Retrieving Original Attributes with the update_wrapper Decorator

As mentioned, a decorator replaces the original function with a new one 
built on the fly. However, this new function lacks many of the attributes of 
the original function, such as its docstring and its name. Listing 7-4 shows 
how the function foobar() loses its docstring and its name attribute once it 
is decorated with the is_admin decorator.

>>> def is_admin(f):
...     def wrapper(*args, **kwargs):
...         if kwargs.get('username') != 'admin':
...             raise Exception("This user is not allowed to get food")
...         return f(*args, **kwargs)
...     return wrapper
...
>>> def foobar(username="someone"):
...     """Do crazy stuff."""
...     pass
...
>>> foobar.func_doc
'Do crazy stuff.'
>>> foobar.__name__
'foobar'
>>> @is_admin
... def foobar(username="someone"):
...     """Do crazy stuff."""
...     pass
...
>>> foobar.__doc__
>>> foobar.__name__
'wrapper'

Listing 7-4: A decorated function loses its docstring and name attributes.



Methods and Decorators   105

Not having the correct docstring and name attribute for a function can 
be problematic in various situations, such as when generating the source 
code documentation.

Fortunately, the functools module in the Python Standard Library solves 
this problem with the update_wrapper() function, which copies the attributes 
from the original function that were lost to the wrapper itself. The source 
code of update_wrapper() is shown in Listing 7-5.

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
                       '__annotations__')
WRAPPER_UPDATES = ('__dict__',)
def update_wrapper(wrapper,
                   wrapped,
                   assigned = WRAPPER_ASSIGNMENTS,
                   updated = WRAPPER_UPDATES):
    for attr in assigned:
        try:
            value = getattr(wrapped, attr)
        except AttributeError:
            pass
        else:
            setattr(wrapper, attr, value)
    for attr in updated:
        getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
    # Issue #17482: set __wrapped__ last so we don't inadvertently copy it
    # from the wrapped function when updating __dict__
    wrapper.__wrapped__ = wrapped
    # Return the wrapper so this can be used as a decorator via partial()
    return wrapper

Listing 7-5: The update_wrapper() source code

In Listing 7-5, the update_wrapper() source code highlights which attri-
butes are worth saving when wrapping a function with a decorator. By 
default, the __name__ attribute, __doc__ attribute, and some other attributes 
are copied. You can also personalize which attributes of a function are 
copied to the decorated function. When we use update_wrapper() to rewrite 
our example from Listing 7-4, things are much nicer:

>>> def foobar(username="someone"):
...     """Do crazy stuff."""
...     pass
...
>>> foobar = functools.update_wrapper(is_admin, foobar)
>>> foobar.__name__
'foobar'
>>> foobar.__doc__
'Do crazy stuff.'

Now the foobar() function has the correct name and docstring even 
when decorated by is_admin. 



106   Chapter 7

wraps: A Decorator for Decorators

It can get tedious to use update_wrapper() manually when creating decorators, 
so functools provides a decorator for decorators called wraps. Listing 7-6 shows 
the wraps decorator in use.

import functools

def check_is_admin(f):
    @functools.wraps(f)
    def wrapper(*args, **kwargs):
        if kwargs.get('username') != 'admin':
            raise Exception("This user is not allowed to get food")
        return f(*args, **kwargs)
    return wrapper

class Store(object):
    @check_is_admin
    def get_food(self, username=None, food=None):
        """Get food from storage."""
        return self.storage.get(food)

Listing 7-6: Updating our decorator with wraps from functools

With functools.wrap, the decorator function check_is_admin() that returns 
the wrapper() function takes care of copying the docstring, name function, 
and other information from the function f passed as argument. Thus, 
the decorated function (get_food(), in this case) still sees its unchanged 
signature.

Extracting Relevant Information with inspect

In our examples so far, we have assumed that the decorated function will 
always have a username passed to it as a keyword argument, but that might 
not be the case. It might instead have a bunch of information from which 
we need to extract the username to check. With this in mind, we’ll build a 
smarter version of our decorator that can look at the decorated function’s 
arguments and pull out what it needs.

For this, Python has the inspect module, which allows us to retrieve a 
function’s signature and operate on it, as shown in Listing 7-7.

import functools
import inspect

def check_is_admin(f):
    @functools.wraps(f)
    def wrapper(*args, **kwargs):
        func_args = inspect.getcallargs(f, *args, **kwargs)
        if func_args.get('username') != 'admin':
            raise Exception("This user is not allowed to get food")
        return f(*args, **kwargs)
    return wrapper



Methods and Decorators   107

@check_is_admin
def get_food(username, type='chocolate'):
    return type + " nom nom nom!"

Listing 7-7: Using tools from the inspect module to extract information

The function that does the heavy lifting here is inspect.getcallargs(), 
which returns a dictionary containing the names and values of the argu-
ments as key-value pairs. In our example, this function returns {'username': 
'admin','type': 'chocolate'}. That means that our decorator does not have 
to check whether the username parameter is a positional or a keyword argu-
ment; all the decorator has to do is look for username in the dictionary.

Using functools.wraps and the inspect module, you should be able to 
write any custom decorator that you would ever need. However, do not 
abuse the inspect module: while being able to guess what the function will 
accept as an argument sounds handy, this capability can be fragile, break-
ing easily when function signatures change. Decorators are a terrific way to 
implement the Don’t Repeat Yourself mantra so cherished by developers.

How Methods Work in Python
Methods are pretty simple to use and understand, and you’ve likely just 
used them correctly without delving in much deeper than you needed to. 
But to understand what certain decorators do, you need to know how meth-
ods work behind the scenes.

A method is a function that is stored as a class attribute. Let’s have a look 
at what happens when we try to access such an attribute directly:

>>> class Pizza(object):
...     def __init__(self, size):
...         self.size = size
...     def get_size(self):
...         return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7fdbfd1a8b90>

We are told that get_size() is a function—but why is that? The reason is 
that at this stage, get_size() is not tied to any particular object. Therefore, it 
is treated as a normal function. Python will raise an error if we try to call it 
directly, like so:

>>> Pizza.get_size()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: get_size() missing 1 required positional argument: 'self'

Python complains that we have not provided the necessary self argu-
ment. Indeed, as it is not bound to any object, the self argument cannot be 
set automatically. However, we are able to use the get_size() function not 



108   Chapter 7

only by passing an arbitrary instance of the class to the method if we want 
to but also by passing any object, as long as it has the properties that the 
method expects to find. Here’s an example:

>>> Pizza.get_size(Pizza(42))
42

This call works, just as promised. It is, however, not very convenient: we 
have to refer to the class every time we want to call one of its methods.

So Python goes the extra mile for us by binding a class’s methods 
to its instances. In other words, we can access get_size() from any Pizza 
instance, and, better still, Python will automatically pass the object itself 
to the method’s self parameter, like so:

>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>
>>> Pizza(42).get_size()
42

As expected, we do not have to provide any argument to get_size(), 
since it’s a bound method: its self argument is automatically set to our 
Pizza instance. Here is an even clearer example:

>>> m = Pizza(42).get_size
>>> m()
42

As long as you have a reference to the bound method, you do not even 
have to keep a reference to your Pizza object. Moreover, if you have a refer-
ence to a method but you want to find out which object it is bound to, you 
can just check the method’s __self__ property, like so:

>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x7f3138827910>
>>> m == m.__self__.get_size
True

Obviously, we still have a reference to our object, and we can find it if 
we want.

Static Methods
Static methods belong to a class, rather than an instance of a class, so they 
don’t actually operate on or affect class instances. Instead, a static method 
operates on the parameters it takes. Static methods are generally used to 
create utility functions, because they do not depend on the state of the 
class or its objects.



Methods and Decorators   109

For example, in Listing 7-8, the static mix_ingredients() method belongs 
to the Pizza class but could actually be used to mix ingredients for any 
other food.

class Pizza(object):
    @staticmethod
    def mix_ingredients(x, y):
        return x + y

    def cook(self):
        return self.mix_ingredients(self.cheese, self.vegetables)

Listing 7-8: Creating a static method as part of a class

You could write mix_ingredients() as a non-static method if you wanted 
to, but it would take a self argument that would never actually be used. 
Using the @staticmethod decorator gives us several things. 

The first is speed: Python does not have to instantiate a bound method 
for each Pizza object we create. Bound methods are objects, too, and cre-
ating them has a CPU and memory cost—even if it’s low. Using a static 
method lets us avoid that, like so:

>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True

Second, static methods improve the readability of the code. When we 
see @staticmethod, we know that the method does not depend on the state of 
the object.

Third, static methods can be overridden in subclasses. If instead of a 
static method, we used a mix_ingredients() function defined at the top level 
of our module, a class inheriting from Pizza wouldn’t be able to change the 
way we mix ingredients for our pizza without overriding the cook() method 
itself. With static methods, the subclasses can override the method for their 
own purposes.

Unfortunately, Python is not always able to detect for itself whether a 
method is static or not—I call that a defect of the language design. One 
possible approach is to add a check that detects such pattern and emits a 
warning using flake8. We will look into how to do this in “Extending flake8 
with AST Checks” on page 140.

Class Methods
Class methods are bound to a class rather than its instances. That means that 
those methods cannot access the state of the object but only the state and 
methods of the class. Listing 7-9 shows how to write a class method.



110   Chapter 7

>>> class Pizza(object):
...     radius = 42
...     @classmethod
...     def get_radius(cls):
...         return cls.radius
...
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
True
>>> Pizza.get_radius()
42

Listing 7-9: Binding a class method to its class

As you can see, there are various ways to access the get_radius() class 
method, but however you choose to access it, the method is always bound 
to the class it is attached to. Also, its first argument must be the class itself. 
Remember: classes are objects too!

Class methods are principally useful for creating factory methods, which 
instantiate objects using a different signature than __init__:

class Pizza(object):
    def __init__(self, ingredients):
        self.ingredients = ingredients

    @classmethod
    def from_fridge(cls, fridge):
        return cls(fridge.get_cheese() + fridge.get_vegetables())

If we used a @staticmethod here instead of a @classmethod, we would have to 
hardcode the Pizza class name in our method, making any class inheriting 
from Pizza unable to use our factory for its own purposes. In this case, however, 
we provide a from_fridge() factory method that we can pass a Fridge object to. 
If we call this method with something like Pizza.from_fridge(myfridge), it 
returns a brand-new Pizza with ingredients taken from what’s available in 
myfridge.

Any time you write a method that cares only about the class of the 
object and not about the object’s state, it should be declared as a class 
method.

Abstract Methods
An abstract method is defined in an abstract base class that may not itself pro-
vide any implementation. When a class has an abstract method, it cannot 
be instantiated. As a consequence, an abstract class (defined as a class that 



Methods and Decorators   111

has at least one abstract method) must be used as a parent class by another 
class. This subclass will be in charge of implementing the abstract method, 
making it possible to instantiate the parent class. 

We can use abstract base classes to make clear the relationships 
between other, connected classes derived from the base class but make the 
abstract base class itself impossible to instantiate. By using abstract base 
classes, you can ensure the classes derived from the base class implement 
particular methods from the base class, or an exception will be raised. The 
following example shows the simplest way to write an abstract method in 
Python:

class Pizza(object):
    @staticmethod
    def get_radius():
        raise NotImplementedError

With this definition, any class inheriting from Pizza must implement 
and override the get_radius() method; otherwise, calling the method raises 
the exception shown here. This is handy for making sure that each subclass 
of Pizza implements its own way of computing and returning its radius.

This way of implementing abstract methods has a drawback: if you 
write a class that inherits from Pizza but forget to implement get_radius(), 
the error is raised only if you try to use that method at runtime. Here’s an 
example:

>>> Pizza()
<__main__.Pizza object at 0x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in get_radius
NotImplementedError

As Pizza is directly instantiable, there’s no way to prevent this from hap-
pening. One way to make sure you get an early warning about forgetting to 
implement and override the method, or trying to instantiate an object with 
abstract methods, is to use Python’s built-in abc (abstract base classes) mod-
ule instead, like so:

import abc

class BasePizza(object, metaclass=abc.ABCMeta):

    @abc.abstractmethod
    def get_radius(self):
         """Method that should do something."""



112   Chapter 7

The abc module provides a set of decorators to use on top of methods 
that will be defined as abstracts and a metaclass to enable this. When you 
use abc and its special metaclass, as shown above, instantiating a BasePizza or 
a class inheriting from it that doesn’t override get_radius() causes a TypeError:

>>> BasePizza()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class BasePizza with abstract methods 
get_radius

We try to instantiate the abstract BasePizza class and are immediately 
told it can’t be done! 

While using abstract methods doesn’t guarantee that the method is 
implemented by the user, this decorator helps you catch the error earlier. 
This is especially handy when you are providing interfaces that must be 
implemented by other developers; it’s a good documentation hint. 

Mixing Static, Class, and Abstract Methods
Each of these decorators is useful on its own, but the time may come when 
you’ll have to use them together. 

For example, you could define a factory method as a class method 
while forcing the implementation to be made in a subclass. In that case, 
you’d need to have a class method defined as both an abstract method and 
a class method. This section gives some tips that will help you with that.

First, an abstract method’s prototype is not set in stone. When you 
implement the method, there is nothing stopping you from extending the 
argument list as you see fit. Listing 7-10 is an example of code in which a 
subclass extends the signature of the abstract method of its parent.

import abc

class BasePizza(object, metaclass=abc.ABCMeta):

    @abc.abstractmethod
    def get_ingredients(self):
         """Returns the ingredient list."""

class Calzone(BasePizza):
    def get_ingredients(self, with_egg=False):
        egg = Egg() if with_egg else None
        return self.ingredients + [egg]

Listing 7-10: Using a subclass to extend the signature of the abstract method of its parent

We define the Calzone subclass to inherit from the BasePizza class. We can 
define the Calzone subclass’s methods any way we like, as long as they support 



Methods and Decorators   113

the interface we define in BasePizza. This includes implementing the methods 
as either class or static methods. The following code defines an abstract 
get_ingredients() method in the base class and a static get_ingredients() 
method in the DietPizza subclass:

import abc

class BasePizza(object, metaclass=abc.ABCMeta):

    @abc.abstractmethod
    def get_ingredients(self):
         """Returns the ingredient list."""

class DietPizza(BasePizza):
    @staticmethod
    def get_ingredients():
        return None

Even though our static get_ingredients() method doesn’t return a result 
based on the object’s state, it supports our abstract BasePizza class’s inter-
face, so it’s still valid.

It is also possible to use the @staticmethod and @classmethod decorators 
on top of @abstractmethod in order to indicate that a method is, for example, 
both static and abstract, as shown in Listing 7-11.

import abc

class BasePizza(object, metaclass=abc.ABCMeta):

    ingredients = ['cheese']

    @classmethod
    @abc.abstractmethod
    def get_ingredients(cls):
         """Returns the ingredient list."""
         return cls.ingredients

Listing 7-11: Using a class method decorator with abstract methods

The abstract method get_ingredients() needs to be implemented by 
a subclass, but it’s also a class method, meaning the first argument it will 
receive will be a class (not an object).

Note that by defining get_ingredients() as a class method in BasePizza 
like this, you are not forcing any subclasses to define get_ingredients() as a 
class method—it could be a regular method. The same would apply if we 
had defined it as a static method: there’s no way to force subclasses to imple-
ment abstract methods as a specific kind of method. As we have seen, you 
can change the signature of an abstract method when implementing it in a 
subclass in any way you like.



114   Chapter 7

Putting Implementations in Abstract Methods
Hold the phone: in Listing 7-12, we have an implementation in an abstract 
method. Can we do that? The answer is yes. Python does not have a problem 
with it! You can put code in your abstract methods and call it using super(), 
as demonstrated in Listing 7-12.

import abc

class BasePizza(object, metaclass=abc.ABCMeta):

    default_ingredients = ['cheese']

    @classmethod
    @abc.abstractmethod
    def get_ingredients(cls):
         """Returns the default ingredient list."""
         return cls.default_ingredients

class DietPizza(BasePizza):
    def get_ingredients(self):
        return [Egg()] + super(DietPizza, self).get_ingredients()

Listing 7-12: Using an implementation in an abstract method

In this example, every Pizza you make that inherits from BasePizza has 
to override the get_ingredients() method, but every Pizza also has access to 
the base class’s default mechanism for getting the ingredients list. This 
mechanism is especially useful when providing an interface to implement 
while also providing base code that might be useful to all inheriting classes.

The Truth About super
Python has always allowed developers to use both single and multiple inheri-
tances to extend their classes, but even today, many developers do not seem 
to understand how these mechanisms, and the super() method that is associ-
ated with them, work. To fully understand your code, you need to understand 
the trade-offs. 

Multiple inheritances are used in many places, particularly in code 
involving a mixin pattern. A mixin is a class that inherits from two or more 
other classes, combining their features.

n o t e  Many of the pros and cons of single and multiple inheritances, composition, or even 
duck typing are out of scope for this book, so we won’t cover everything here. If you 
are not familiar with these notions, I suggest you read about them to form your own 
opinions.

As you should know by now, classes are objects in Python. The construct 
used to create a class is a special statement that you should be well familiar 
with: class classname(expression of inheritance).



Methods and Decorators   115

The code in parentheses is a Python expression that returns the list of 
class objects to be used as the class’s parents. Ordinarily, you would specify 
them directly, but you could also write something like this to specify the list 
of parent objects:

>>> def parent():
...     return object
...
>>> class A(parent()):
...     pass
...
>>> A.mro()
[<class '__main__.A'>, <type 'object'>]

This code works as expected: we declare class A with object as its 
parent class. The class method mro() returns the method resolution order 
used to resolve attributes—it defines how the next method to call is found 
via the tree of inheritance between classes. The current MRO system was 
first implemented in Python 2.3, and its internal workings are described in 
the Python 2.3 release notes. It defines how the system browses the tree of 
inheritance between classes to find the method to call.

We already saw that the canonical way to call a method in a parent 
class is to use the super() function, but what you probably don’t know is 
that super() is actually a constructor and you instantiate a super object each 
time you call it. It takes either one or two arguments: the first argument is a 
class, and the second, optional argument is either a subclass or an instance 
of the first argument.

The object returned by the constructor functions as a proxy for the 
parent classes of the first argument. It has its own __getattribute__ method 
that iterates over the classes in the MRO list and returns the first matching 
attribute it finds. The __getattribute__ method is called when an attribute 
of the super() object is retrieved, as shown in Listing 7-13.

>>> class A(object):
...     bar = 42
...     def foo(self):
...             pass
...
>>> class B(object):
...     bar = 0
...
>>> class C(A, B):
...     xyz = 'abc'
...
>>> C.mro()
[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <type 'object'>]
>>> super(C, C()).bar
42
>>> super(C, C()).foo
<bound method C.foo of <__main__.C object at 0x7f0299255a90>>
>>> super(B).__self__



116   Chapter 7

>>> super(B, B()).__self__
<__main__.B object at 0x1096717f0>

Listing 7-13: The super() function is a constructor that instantiates a super object. 

When requesting an attribute of the super object of an instance of C, 
the __getattribute__ method of the super() object walks through the MRO 
list and returns the attribute from the first class it finds that has the super 
attribute.

In Listing 7-13, we called super() with two arguments, meaning we used 
a bound super object. If we call super() with only one argument, it returns an 
unbound super object instead:

>>> super(C)
<super: <class 'C'>, NULL>

Since no instance has been provided as the second argument, the super 
object cannot be bound to any instance. Therefore, you cannot use this 
unbound object to access class attributes. If you try, you’ll get the follow-
ing errors:

>>> super(C).foo
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'foo'
>>> super(C).bar
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'bar'
>>> super(C).xyz
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'xyz'

At first glance, it might seem like this unbound kind of super object is use-
less, but actually the way the super class implements the descriptor protocol 
__get__ makes unbound super objects useful as class attributes:

>>> class D(C):
...     sup = super(C)
...
>>> D().sup
<super: <class 'C'>, <D object>>
>>> D().sup.foo
<bound method D.foo of <__main__.D object at 0x7f0299255bd0>>
>>> D().sup.bar
42

The unbound super object’s __get__ method is called using the instance 
super(C).__get__(D()) and the attribute name 'foo' as arguments, allowing it 
to find and resolve foo.



Methods and Decorators   117

n o t e  Even if you’ve never heard of the descriptor protocol, it’s likely you’ve used it through 
the @property decorator without knowing it. The descriptor protocol is the mecha-
nism in Python that allows an object stored as an attribute to return something other 
than itself. This protocol is not covered in this book, but you can find out more about 
it in the Python data model documentation.

There are plenty of situations in which using super() can be tricky, such 
as when handling different method signatures along the inheritance chain. 
Unfortunately, there’s no silver bullet for all occasions. The best precau-
tion is to use tricks such as having all your methods accept their arguments 
using *args, **kwargs.

Since Python 3, super() has picked up a bit of magic: it can now be 
called from within a method without any arguments. When no argu-
ments are passed to super(), it automatically searches the stack frame 
for arguments:

class B(A):
      def foo(self):
          super().foo()

The standard way of accessing parent attributes in subclasses is super(), 
and you should always use it. It allows cooperative calls of parent methods 
without any surprises, such as parent methods not being called or being 
called twice when multiple inheritances are used.

Summary
Equipped with what you learned in this chapter, you should be unbeatable 
on everything that concerns methods definition in Python. Decorators are 
essential when it comes to code factorization, and proper use of the built-
in decorators provided by Python can vastly improve the neatness of your 
Python code. Abstract classes are especially useful when providing an API 
to other developers and services.

Class inheritance is not often fully understood, and having an overview 
of the internal machinery of the language is a good way to fully apprehend 
how this works. There should be no secrets left on this topic for you now!





8
F u n c t i o n a l  P r o g r a m m i n g

Many Python developers are unaware of 
the extent to which you can use functional 

programming in Python, which is a shame: 
with few exceptions, functional programming 

allows you to write more concise and efficient code. 
Moreover, Python’s support for functional program-
ming is extensive. 

This chapter will cover some of the functional programming aspects 
of Python, including creating and using generators. You’ll learn about the 
most useful functional packages and functions available and how to use 
them in combination to get the most efficient code.



120   Chapter 8

n o t e  If you want to get serious about functional programming, here’s my advice: take a 
break from Python and learn a hugely functional programming language, such as 
Lisp. I know it might sound strange to talk about Lisp in a Python book, but playing 
with Lisp for several years taught me how to “think functional.” You may not develop 
the thought processes necessary to make full use of functional programming if all your 
experience comes from imperative and object-oriented programming. Lisp isn’t purely 
functional itself, but it has more focus on functional programming than you’ll find in 
Python.

Creating Pure Functions
When you write code using a functional style, your functions are designed 
to have no side effects: instead, they take an input and produce an output 
without keeping state or modifying anything not reflected in the return 
value. Functions that follow this ideal are referred to as purely functional.

Let’s start with an example of a regular, non-pure function that 
removes the last item in a list:

def remove_last_item(mylist):
    """Removes the last item from a list."""
    mylist.pop(-1)  # This modifies mylist

The following is a pure version of the same function:

def butlast(mylist):

    return mylist[:-1]  # This returns a copy of mylist

We define a butlast() function to work like butlast in Lisp, in that it 
returns the list without the last element without modifying the original list. 
Instead, it returns a copy of the list that has the modifications in place, 
allowing us to keep the original.

The practical advantages of functional programming include the 
following:

Modularity Writing with a functional style forces a certain degree of 
separation in solving your individual problems and makes sections of 
code easier to reuse in other contexts. Since the function does not 
depend on any external variable or state, calling it from a different 
piece of code is straightforward. 

Brevity Functional programming is often less verbose than other 
paradigms.

Concurrency Purely functional functions are thread-safe and can run 
concurrently. Some functional languages do this automatically, which 
can be a big help if you ever need to scale your application, though this 
is not quite the case yet in Python.



Functional Programming   121

Testability Testing a functional program is incredibly easy: all you 
need is a set of inputs and an expected set of outputs. They are idem-
potent, meaning that calling the same function over and over with the 
same arguments will always return the same result.

Generators
A generator is an object that behaves like an iterator, in that it generates and 
returns a value on each call of its next() method until a StopIteration is raised. 
Generators, first introduced in PEP 255, offer an easy way to create objects 
that implement the iterator protocol. While writing generators in a functional 
style is not strictly necessary, doing so makes them easier to write and debug 
and is a common practice.

To create a generator, just write a regular Python function that contains 
a yield statement. Python will detect the use of yield and tag the function 
as a generator. When execution reaches the yield statement, the function 
returns a value as with a return statement, but with one notable difference: 
the interpreter will save a stack reference, and this will be used to resume the 
function’s execution when the next() function is called again.

When functions are executed, the chaining of their execution produces 
a stack—function calls are said to be stacked on each other. When a func-
tion returns, it’s removed from the stack, and the value it returns is passed 
to the calling function. In the case of a generator, the function does not 
really return but yields instead. Python therefore saves the state of the func-
tion as a stack reference, resuming the execution of the generator at the 
point it saved when the next iteration of the generator is needed.

Creating a Generator
As mentioned, you create a generator by writing a normal function and 
including yield in the function’s body. Listing 8-1 creates a generator called 
mygenerator() that includes three yields, meaning it will iterate with the next 
three calls to next().

>> def mygenerator():
...     yield 1
...     yield 2
...     yield 'a'
...
>>> mygenerator()
<generator object mygenerator at 0x10d77fa50>
>>> g = mygenerator()
>>> next(g)
1
>>> next(g)
2
>>> next(g)
'a'

http://docs.python.org/3/library/stdtypes.html#iterator-types


122   Chapter 8

>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Listing 8-1: Creating a generator with three iterations

When it runs out of yield statements, StopIteration is raised at the next 
call to next().

In Python, generators keep a reference to the stack when a function 
yields something, and they resume this stack when a call to next() is exe-
cuted again. 

The naive approach when iterating over any data without using genera-
tors is to build the entire list first, which often consumes memory wastefully. 

Say we want to find the first number between 1 and 10,000,000 that’s 
equal to 50,000. Sounds easy, doesn’t it? Let’s make this a challenge. We’ll 
run Python with a memory constraint of 128MB and try the naive approach 
of first building the entire list:

$ ulimit -v 131072 
$ python3 
>>> a = list(range(10000000)) 

This naive method first tries to build the list, but if we run the program 
so far:

Traceback (most recent call last): File "<stdin>", line 1, in <module> 
MemoryError

Uh-oh. Turns out we can’t build a list of 10 million items with only 128MB 
of memory!

W a r n i n g  In Python 3, range() returns a generator when iterated. To get a generator in 
Python 2, you have to use xrange() instead. This function doesn’t exist in Python 3 
anymore, since it’s redundant.

Let’s try using a generator instead, with the same 128MB restriction:

$ ulimit -v 131072
$ python3
>>> for value in range(10000000):
...     if value == 50000:
...             print("Found it")
...             break
...
Found it

This time, our program executes without issue. When it is iterated over, 
the range() class returns a generator that dynamically generates our list of 



Functional Programming   123

integers. Better still, since we are only interested in the 50,000th number, 
instead of building the full list, the generator only had to generate 50,000 
numbers before it stopped.

By generating values on the fly, generators allow you to handle large 
data sets with minimal consumption of memory and processing cycles. 
Whenever you need to work with a huge number of values, generators can 
help you handle them efficiently.

Returning and Passing Values with yield
A yield statement also has a less commonly used feature: it can return a 
value in the same way as a function call. This allows us to pass a value to a 
generator by calling its send() method. As an example of using send(), we’ll 
write a function called shorten() that takes a list of strings and returns a list 
consisting of those same strings, only truncated (Listing 8-2).

def shorten(string_list):
    length = len(string_list[0])
    for s in string_list:
        length = yield s[:length]

mystringlist = ['loremipsum', 'dolorsit', 'ametfoobar']
shortstringlist = shorten(mystringlist)
result = []
try:
    s = next(shortstringlist)
    result.append(s)
    while True:
        number_of_vowels = len(filter(lambda letter: letter in 'aeiou', s))
        # Truncate the next string depending
        # on the number of vowels in the previous one
        s = shortstringlist.send(number_of_vowels)
        result.append(s)
except StopIteration:
    pass

Listing 8-2: Returning and using a value with send()

In this example, we’ve written a function called shorten() that takes 
a list of strings and returns a list consisting of those same strings, only 
truncated. The length of each truncated string is equal to the number 
of vowels in the previous string: loremipsum has four vowels, so the second 
value returned by the generator will be the first four letters of dolorsit; dolo 
has only two vowels, so ametfoobar will be truncated to its first two letters 
am. The generator then stops and raises StopIteration. Our generator thus 
returns:

['loremipsum', 'dolo', 'am']

Using yield and send() in this fashion allows Python generators to func-
tion like coroutines seen in Lua and other languages.



124   Chapter 8

PEP 289 introduced generator expressions, making it possible to build 
one-line generators using a syntax similar to list comprehension:

>>> (x.upper() for x in ['hello', 'world'])
<generator object <genexpr> at 0x7ffab3832fa0>
>>> gen = (x.upper() for x in ['hello', 'world'])
>>> list(gen)
['HELLO', 'WORLD']

In this example, gen is a generator, just as if we had used the yield state-
ment. The yield in this case is implicit.

Inspecting Generators
To determine whether a function is considered a generator, use inspect 
.isgeneratorfunction(). In Listing 8-3, we create a simple generator and 
inspect it.

>>> import inspect
>>> def mygenerator():
...     yield 1
...
>>> inspect.isgeneratorfunction(mygenerator)
True
>>> inspect.isgeneratorfunction(sum)
False

Listing 8-3: Checking whether a function is a generator

Import the inspect package to use isgeneratorfunction() and then just 
pass it the name of the function to inspect. Reading the source code of 
inspect.isgeneratorfunction() gives us some insight into how Python marks 
functions as being generators (see Listing 8-4).

def isgeneratorfunction(object):
    """Return true if the object is a user-defined generator function.

    Generator function objects provides same attributes as functions.

    See help(isfunction) for attributes listing."""
 
  return bool((isfunction(object) or ismethod(object)) and
                object.func_code.co_flags & CO_GENERATOR)

Listing 8-4: Source code of inspect.isgeneratorfunction()

The isgeneratorfunction() function checks that the object is a function or 
a method and that its code has the CO_GENERATOR flag set. This example shows 
how easy it is to understand how Python works under the hood.



Functional Programming   125

The inspect package provides the inspect.getgeneratorstate() function, 
which gives the current state of the generator. We’ll use it on mygenerator() 
here at different points of execution:

>>> import inspect
>>> def mygenerator():
...     yield 1
...
>>> gen = mygenerator()
>>> gen
<generator object mygenerator at 0x7f94b44fec30>
>>> inspect.getgeneratorstate(gen)

u 'GEN_CREATED'
>>> next(gen)
1
>>> inspect.getgeneratorstate(gen)

v 'GEN_SUSPENDED'
>>> next(gen)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> inspect.getgeneratorstate(gen)

w 'GEN_CLOSED'

This allows us to determine whether the generator is waiting to be run 
for the first time (GEN_CREATED) u, waiting to be resumed by a call to next() 
(GEN_SUSPENDED) v, or finished running (GEN_CLOSED) w. This might come in 
handy to debug your generators.

List Comprehensions
List comprehension, or listcomp for short, allows you to define a list’s con-
tents inline with its declaration. To make a list into a listcomp, you must 
wrap it in square brackets as usual, but also include an expression that will 
generate the items in the list and a for loop to loop through them. 

The following example creates a list without using list comprehension:

>>> x = []
>>> for i in (1, 2, 3):
...     x.append(i)
...
>>> x
[1, 2, 3]

And this next example uses list comprehension to make the same list 
with a single line:

>>> x = [i for i in (1, 2, 3)]
>>> x
[1, 2, 3]



126   Chapter 8

Using a list comprehension presents two advantages: code written using 
listcomps is usually shorter and therefore compiles down to fewer opera-
tions for Python to perform. Rather than creating a list and calling append 
over and over, Python can just create the list of items and move them into a 
new list in a single operation.

You can use multiple for statements together and use if statements to 
filter out items. Here we create a list of words and use list comprehension 
to capitalize each item, split up items with multiple words into single words, 
and delete the extraneous or :

x = [word.capitalize()
     for line in ("hello world?", "world!", "or not")
     for word in line.split()
     if not word.startswith("or")]
>>> x 
['Hello', 'World?', 'World!', 'Not']

This code has two for loops: the first iterates over the text lines, while 
the second iterates over words in each of those lines. The final if statement 
filters out words that start with or to exclude them from the final list.

Using list comprehension rather than for loops is a neat way to define 
lists quickly. Since we’re still talking about functional programming, it’s 
worth noting that lists built through list comprehension shouldn’t rely on 
changing the program’s state: you are not expected to modify any variable 
while building the list. This usually makes the lists more concise and easier 
to read than lists made without listcomp.

Note that there’s also syntax for building dictionaries or sets in the 
same fashion, like so:

>>> {x:x.upper() for x in ['hello', 'world']}
{'world': 'WORLD', 'hello': 'HELLO'}
>>> {x.upper() for x in ['hello', 'world']}
set(['WORLD', 'HELLO'])

Functional Functions Functioning
You might repeatedly encounter the same set of problems when manipulat-
ing data using functional programming. To help you deal with this situ-
ation efficiently, Python includes a number of functions for functional 
programming. This section will give you a quick overview of some of these 
built-in functions that allow you to build fully functional programs. Once 
you have an idea of what’s available, I encourage you to research further 
and try out functions where they might apply in your own code.



Functional Programming   127

Applying Functions to Items with map() 
The map() function takes the form map(function, iterable) and applies function 
to each item in iterable to return a list in Python 2 or an iterable map object in 
Python 3, as shown in Listing 8-5.

>>> map(lambda x: x + "bzz!", ["I think", "I'm good"])
<map object at 0x7fe7101abdd0>
>>> list(map(lambda x: x + "bzz!", ["I think", "I'm good"]))
['I thinkbzz!', "I'm goodbzz!"]

Listing 8-5: Using map() in Python 3

You could write an equivalent of map() using list comprehension, like 
this:

>>> (x + "bzz!" for x in ["I think", "I'm good"])
<generator object <genexpr> at 0x7f9a0d697dc0>
>>> [x + "bzz!" for x in ["I think", "I'm good"]]
['I thinkbzz!', "I'm goodbzz!"]

Filtering Lists with filter()
The filter() function takes the form filter(function or None, iterable) and 
filters the items in iterable based on the result returned by function. This 
will return a list in Python 2 or an iterable filter object in Python 3:

>>> filter(lambda x: x.startswith("I "), ["I think", "I'm good"])
<filter object at 0x7f9a0d636dd0>
>>> list(filter(lambda x: x.startswith("I "), ["I think", "I'm good"]))
['I think']

You could also write an equivalent of filter() using list comprehension, 
like so:

>>> (x for x in ["I think", "I'm good"] if x.startswith("I "))
<generator object <genexpr> at 0x7f9a0d697dc0>
>>> [x for x in ["I think", "I'm good"] if x.startswith("I ")]
['I think']

Getting Indexes with enumerate()
The enumerate() function takes the form enumerate(iterable[, start]) and 
returns an iterable object that provides a sequence of tuples, each consisting 
of an integer index (starting with start, if provided) and the corresponding 
item in iterable. This function is useful when you need to write code that 
refers to array indexes. For example, instead of writing this:

i = 0
while i < len(mylist):



128   Chapter 8

    print("Item %d: %s" % (i, mylist[i]))
    i += 1

you could accomplish the same thing more efficiently with enumerate(), like so:

for i, item in enumerate(mylist):
    print("Item %d: %s" % (i, item))

Sorting a List with sorted()
The sorted() function takes the form sorted(iterable, key=None, reverse=False) 
and returns a sorted version of iterable. The key argument allows you to 
provide a function that returns the value to sort on, as shown here:

>>> sorted([("a", 2), ("c", 1), ("d", 4)])
[('a', 2), ('c', 1), ('d', 4)]
>>> sorted([("a", 2), ("c", 1), ("d", 4)], key=lambda x: x[1])
[('c', 1), ('a', 2), ('d', 4)]

Finding Items That Satisfy Conditions with any() and all()
The any(iterable) and all(iterable) functions return a Boolean depending 
on the values returned by iterable. These simple functions are equivalent to 
the following full Python code:

def all(iterable):
    for x in iterable:
        if not x:
            return False
    return True

def any(iterable):
    for x in iterable:
        if x:
            return True
    return False

These functions are useful for checking whether any or all of the values 
in an iterable satisfy a given condition. For example, the following checks a 
list for two conditions:

mylist = [0, 1, 3, -1]
if all(map(lambda x: x > 0, mylist)):
    print("All items are greater than 0")
if any(map(lambda x: x > 0, mylist)):
    print("At least one item is greater than 0")

The difference here is that any() returns True when at least one element 
meets the condition, while all() returns True only if every element meets 
the condition. The all() function will also return True for an empty iterable, 
since none of the elements is False.



Functional Programming   129

Combining Lists with zip()
The zip() function takes the form zip(iter1 [,iter2 [...]]). It takes multi-
ple sequences and combines them into tuples. This is useful when you need 
to combine a list of keys and a list of values into a dict. As with the other 
functions described here, zip() returns a list in Python 2 and an iterable in 
Python 3. Here we map a list of keys to a list of values to create a dictionary:

>>> keys = ["foobar", "barzz", "ba!"]
>>> map(len, keys)
<map object at 0x7fc1686100d0>
>>> zip(keys, map(len, keys))
<zip object at 0x7fc16860d440>
>>> list(zip(keys, map(len, keys)))
[('foobar', 6), ('barzz', 5), ('ba!', 3)]
>>> dict(zip(keys, map(len, keys)))
{'foobar': 6, 'barzz': 5, 'ba!': 3}

A Common Problem Solved
There’s one important tool still to cover. Often when working with lists we 
want to find the first item that satisfies a specific condition. We’ll look at the 
many ways to accomplish this and then see the most efficient way: the first 
package. 

Finding the Item with Simple Code

We might be able to find the first item to satisfy a condition with a function 
like this:

def first_positive_number(numbers):
    for n in numbers:
        if n > 0:
            return n

F unc t ion a l F unc t ions in Py t hon 2 a nd 3

You might have noticed by now how the return types differ between Python 2 
and Python 3. Most of Python’s purely functional built-in functions return a list 
rather than an iterable in Python 2, making them less memory efficient than 
their Python 3.x equivalents. If you’re planning to write code using these func-
tions, keep in mind that you’ll get the most benefit out of them in Python 3. 
If you’re stuck with Python 2, don’t despair: the itertools module from the 
Standard Library provides an iterator-based version of many of these functions 
(itertools.izip(), itertools.imap(), itertools.ifilter(), and so on).



130   Chapter 8

We could rewrite the first_positive_number() function in functional style 
like this:

def first(predicate, items):
    for item in items:
        if predicate(item):
            return item

first(lambda x: x > 0, [-1, 0, 1, 2])

By using a functional approach where the predicate is passed as argu-
ment, the function becomes easily reusable. We could even write it more 
concisely, like so:

# Less efficient
list(filter(lambda x: x > 0, [-1, 0, 1, 2]))[0] 
# Efficient
next(filter(lambda x: x > 0, [-1, 0, 1, 2]))

Note that this may raise an IndexError if no items satisfy the condition, 
causing list(filter()) to return an empty list.

For simple cases, you can rely on next() to prevent IndexError from 
occurring, like so:

>>> a = range(10)
>>> next(x for x in a if x > 3)
4

Listing 8-6 will raise StopIteration if a condition can never be satisfied. 
This too can be solved by adding a second argument of next(), like so.

>>> a = range(10)
>>> next((x for x in a if x > 10), 'default')
'default'

Listing 8-6: Returning a default value when the condition is not met

This will return a default value rather than an error when a condition 
cannot be met. Lucky for us, Python provides a package to handle all of this 
for us. 

Finding the Item Using first()

Rather than writing out the function from Listing 8-6 in all of your pro-
grams, you can include the small Python package first. Listing 8-7 shows 
how this package lets you find the first element of an iterable matching a 
condition.



Functional Programming   131

>>> from first import first
>>> first([0, False, None, [], (), 42])
42
>>> first([-1, 0, 1, 2])
-1
>>> first([-1, 0, 1, 2], key=lambda x: x > 0)
1

Listing 8-7: Finding the first item in a list that satisfies a condition

You see that the first() function returns the first valid, non-empty item 
in a list. 

Using lambda() with functools

You’ll notice that we’ve used lambda() in a good portion of the examples so 
far in this chapter. The lambda() function was added to Python to facilitate 
functional programming functions such as map() and filter(), which other-
wise would have required writing an entirely new function every time you 
wanted to check a different condition. Listing 8-8 is equivalent to Listing 8-7 
but is written without using lambda().

import operator
from first import first

def greater_than_zero(number):
    return number > 0

first([-1, 0, 1, 2], key=greater_than_zero)

Listing 8-8: Finding the first item to meet the condition, without using lambda()

This code works identically to that in Listing 8-7, returning the first 
non-empty value in a list to meet the condition, but it’s a good deal more 
cumbersome: if we wanted to get the first number in the sequence that’s 
longer than, say, 42 items, we’d need to define an appropriate function via 
def rather than defining it inline with our call to first().

But despite its usefulness in helping us avoid situations like this, lambda 
still has its problems. The first module contains a key argument that can 
be used to provide a function that receives each item as an argument and 
returns a Boolean indicating whether it satisfies the condition. However, 
we can’t pass a key function, as it would require more than a single line of 
code: a lambda statement cannot be written on more than one line. That is a 
significant limitation of lambda.

Instead, we would have to go back to the cumbersome pattern of writing 
new function definitions for each key we need. Or would we?

The functools package comes to the rescue with its partial() method, 
which provides us with a more flexible alternative to lambda. The functools 
.partial() method allows us to create a wrapper function with a twist: rather 



132   Chapter 8

than changing the behavior of a function, it instead changes the arguments 
it receives, like so:

from functools import partial
from first import first

u def greater_than(number, min=0): 
    return number > min

v first([-1, 0, 1, 2], key=partial(greater_than, min=42)) 

Here we create a new greater_than() function that works just like the 
old greater_than_zero() from Listing 8-8 by default, but this version allows 
us to specify the value we want to compare our numbers to, whereas before 
it was hardcoded. Here, we pass functools.partial() to our function and 
the value we want for min u, and we get back a new function that has min set 
to 42, just as we want v. In other words, we can write a function and use 
functools.partial() to customize the behavior of our new functions to suit 
our needs in any given situation. 

Even this version can be pared down. All we’re doing in this example is 
comparing two numbers, and as it turns out, the operator module has built-
in functions for exactly that:

import operator
from functools import partial
from first import first

first([-1, 0, 1, 2], key=partial(operator.lt, 0))

This is a good example of functools.partial() working with positional 
arguments. In this case, the function operator.lt(a, b), which takes two 
numbers and returns a Boolean that tells us whether the first number is 
less than or equal to the second, is passed to functools.partial(). The 0 
we pass to functools.partial() gets assigned to a, and the argument passed 
to the function returned by functools.partial() gets assigned to b. So this 
works identically to Listing 8-8 but without using lambda or defining any 
additional functions.

N O T E  The functools.partial() method is typically useful in place of lambda and should be 
considered a superior alternative. The lambda function is something of an anomaly 
in the Python language, and dropping it altogether was considered for Python 3 due 
to the function’s limited body size of a single line. 

Useful itertools Functions
Finally, we’ll look at some useful functions in the itertools module in 
the Python Standard Library that you should be aware of. Too many 
programmers end up writing their own versions of these functions simply 
because they aren’t aware that Python provides them out of the box. They 



Functional Programming   133

are all designed to help you manipulate iterator (that’s why the module is 
called iter-tools) and therefore are all purely functional. Here I’ll list a few of 
them and give a brief overview of what they do, and I encourage you to look 
into them further if they seem of use.

•	 accumulate(iterable[, func]) returns a series of accumulated sums of 
items from iterables.

•	 chain(*iterables) iterates over multiple iterables, one after another, with-
out building an intermediate list of all items.

•	 combinations(iterable, r) generates all combinations of length r from 
the given iterable.

•	 compress(data, selectors) applies a Boolean mask from selectors to data 
and returns only the values from data where the corresponding element 
of selectors is True.

•	 count(start, step) generates an endless sequence of values, starting with 
start and incrementing step at a time with each call.

•	 cycle(iterable) loops repeatedly over the values in iterable.

•	 repeat(elem[, n]) repeats an element n times.

•	 dropwhile(predicate, iterable) filters elements of an iterable starting 
from the beginning until predicate is False.

•	 groupby(iterable, keyfunc) creates an iterator that groups items by the 
result returned by the keyfunc() function.

•	 permutations(iterable[, r]) returns successive r-length permutations of 
the items in iterable.

•	 product(*iterables) returns an iterable of the Cartesian product of 
iterables without using a nested for loop.

•	 takewhile(predicate, iterable) returns elements of an iterable starting 
from the beginning until predicate is False.

These functions are particularly useful in conjunction with the operator 
module. When used together, itertools and operator can handle most situ-
ations that programmers typically rely on lambda for. Here’s an example of 
using operator.itemgetter() instead of writing lambda x: x['foo']:

>>> import itertools
>>> a = [{'foo': 'bar'}, {'foo': 'bar', 'x': 42}, {'foo': 'baz', 'y': 43}]
>>> import operator
>>> list(itertools.groupby(a, operator.itemgetter('foo')))
[('bar', <itertools._grouper object at 0xb000d0>), ('baz', <itertools._grouper object at 
0xb00110>)]
>>> [(key, list(group)) for key, group in itertools.groupby(a, operator.itemgetter('foo'))]
[('bar', [{'foo': 'bar'}, {'x': 42, 'foo': 'bar'}]), ('baz', [{'y': 43, 'foo': 'baz'}])]

In this case, we could have also written lambda x: x['foo'], but using 
operator lets us avoid having to use lambda at all.



134   Chapter 8

Summary
While Python is often advertised as being object oriented, it can be used in 
a very functional manner. A lot of its built-in concepts, such as generators 
and list comprehension, are functionally oriented and don’t conflict with 
an object-oriented approach. They also limit the reliance on a program’s 
global state, for your own good.

Using functional programming as a paradigm in Python can help you 
make your program more reusable and easier to test and debug, supporting 
the Don’t Repeat Yourself (DRY) mantra. In this spirit, the standard Python 
modules itertools and operator are good tools to improve the readability of 
your functional code.



9
T h e  A b s T r A c T  s y n T A x  T r e e ,  h y, 

A n d  L i s p - L i k e  A T T r i b u T e s

The abstract syntax tree (AST) is a represen-
tation of the structure of the source code 

of any programming language. Every lan-
guage, including Python, has a specific AST; 

Python’s AST is built by parsing a Python source 
file. Like any tree, this one is made of nodes linked 
together. A node can represent an operation, a state-
ment, an expression, or even a module. Each node 
can contain references to other nodes that make up 
the tree. 

Python’s AST is not heavily documented and is thus hard to deal with at 
first glance, but understanding some deeper aspects of how Python is con-
structed can help you master its usage.

This chapter will examine the AST of some simple Python commands 
to get you familiar with the structure and how it’s used. Once you’re familiar 



136   Chapter 9

with the AST, we’ll build a program that can check for wrongly declared 
methods using flake8 and the AST. Finally, we’ll look at Hy, a Python-Lisp 
hybrid language built on the Python AST.

Looking at the AST
The easiest way to view the Python AST is to parse some Python code and 
dump the generated AST. For that, the Python ast module provides every-
thing you need, as shown in Listing 9-1.

>>> import ast
>>> ast.parse
<function parse at 0x7f062731d950>
>>> ast.parse("x = 42")
<_ast.Module object at 0x7f0628a5ad10>
>>> ast.dump(ast.parse("x = 42"))
"Module(body=[Assign(targets=[Name(id='x', ctx=Store())], value=Num(n=42))])"

Listing 9-1: Using the ast module to dump the AST generated by parsing code

The ast.parse() function parses any string that contains Python code and 
returns an _ast.Module object. That object is actually the root of the tree: you 
can browse it to discover every node making up the tree. To visualize what 
the tree looks like, you can use the ast.dump() function, which will return a 
string representation of the whole tree.

In Listing 9-1, the code x = 42 is parsed with ast.parse(), and the result is 
printed using ast.dump(). This abstract syntax tree can be rendered as shown 
in Figure 9-1, which shows the structure of the Python assign command.

Module

Body
Assign

Targets Value

Num

n

Name

ID ctx

42

Store

x

Figure 9-1: The AST of the assign command in Python

The AST always starts with a root element, which is usually an _ast.Module 
object. This module object contains a list of statements or expressions to eval-
uate in its body attribute and usually represents the content of a file.

As you can probably guess, the ast.Assign object shown in Figure 9-1 
represents an assignment, which is mapped to the = sign in the Python syn-
tax. An ast.Assign object has a list of targets and a value to set the targets to. 



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   137

The list of targets in this case consists of one object, ast.Name, which rep-
resents a variable whose ID is x. The value is a number n with a value (in 
this case) 42. The ctx attribute stores a context, either ast.Store or ast.Load, 
depending on whether the variable is being used for reading or writing. In 
this case, the variable is being assigned a value, so an ast.Store context is used.

We could pass this AST to Python to be compiled and evaluated via the 
built-in compile() function. This function takes an AST as argument, the 
source filename, and a mode (either 'exec', 'eval', or 'single'). The source 
filename can be any name that you want your AST to appear to be from; it 
is common to use the string <input> as the source filename if the data does 
not come from a stored file, as shown in Listing 9-2.

>>> compile(ast.parse("x = 42"), '<input>', 'exec')
<code object <module> at 0x111b3b0, file "<input>", line 1>
>>> eval(compile(ast.parse("x = 42"), '<input>', 'exec'))
>>> x
42

Listing 9-2: Using the compile() function to compile data that is not from a stored file

The modes stand for execute (exec), evaluate (eval), and single state-
ment (single). The mode should match what has been given to ast.parse(), 
whose default is exec.

•	 The exec mode is the normal Python mode, used when an _ast.Module is 
the root of the tree.

•	 The eval mode is a special mode that expects a single ast.Expression as 
the tree.

•	 Finally, single is another special mode that expects a single statement or 
expression. If it gets an expression, sys.displayhook() will be called with 
the result, as when code is run in the interactive shell. 

The root of the AST is ast.Interactive, and its body attribute is a list of 
nodes.

We could build an AST manually using the classes provided in the ast 
module. Obviously, this is a very long way to write Python code and not a 
method I would recommend! Nonetheless, it’s fun to do and helpful for 
learning about the AST. Let’s see what programming with the AST would 
look like.

Writing a Program Using the AST
Let’s write a good old "Hello world!" program in Python by building an 
abstract syntax tree manually.

 >>> hello_world = ast.Str(s='hello world!', lineno=1, col_offset=1)
 >>> print_name = ast.Name(id='print', ctx=ast.Load(), lineno=1, col_offset=1)
 >>> print_call = ast.Call(func=print_name, ctx=ast.Load(),

... args=[hello_world], keywords=[], lineno=1, col_offset=1)
 >>> module = ast.Module(body=[ast.Expr(print_call,



138   Chapter 9

... lineno=1, col_offset=1)], lineno=1, col_offset=1)
 >>> code = compile(module, '', 'exec')

>>> eval(code)
hello world!

Listing 9-3: Writing hello world! using the AST

In Listing 9-3, we build the tree one leaf at a time, where each leaf is an 
element (whether a value or an instruction) of the program. 

The first leaf is a simple string : the ast.Str represents a literal string, 
which here contains the hello world! text. The print_name variable  con-
tains an ast.Name object, which refers to a variable—in this case, the print 
variable that points to the print() function. 

The print_call variable  contains a function call. It refers to the func-
tion name to call, the regular arguments to pass to the function call, and 
the keyword arguments. Which arguments are used depend on the func-
tions being called. In this case, since it’s the print() function, we’ll pass the 
string we made and stored in hello_world.

At last, we create an _ast.Module object  to contain all this code as a list 
of one expression. We can compile _ast.Module objects using the compile() 
function , which parses the tree and generates a native code object. These 
code objects are compiled Python code and can finally be executed by a 
Python virtual machine using eval!

This whole process is exactly what happens when you run Python on a 
.py file: once the text tokens are parsed, they are converted into a tree of ast 
objects, compiled, and evaluated.

n o T e  The arguments lineno and col_offset represent the line number and column offset, 
respectively, of the source code that has been used to generate the AST. It doesn’t make 
much sense to set these values in this context since we are not parsing a source file, but 
it can be useful to be able to find the position of the code that generated the AST. For 
example, Python uses this information when generating backtraces. Indeed, Python 
refuses to compile an AST object that doesn’t provide this information, so we pass fake 
values to these. You could also use the ast.fix_missing_locations() function to set 
the missing values to the ones set on the parent node.

The AST Objects
You can view the whole list of objects available in the AST by reading the 
_ast module documentation (note the underscore).

The objects are organized into two main categories: statements and 
expressions. Statements include types such as assert, assignment (=), aug-
mented assignment (+=, /=, etc.), global, def, if, return, for, class, pass, import, 
raise, and so forth. Statements inherit from ast.stmt; they influence the con-
trol flow of a program and are often composed of expressions.

Expressions include types such as lambda, number, yield, name (variable), 
compare, and call. Expressions inherit from ast.expr; they differ from state-
ments in that they usually produce a value and have no impact on the pro-
gram flow.



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   139

There are also a few smaller categories, such as the ast.operator class, 
which defines standard operators such as add (+), div (/), and right shift (>>), 
and the ast.cmpop module, which defines comparisons operators.

The simple example here should give you an idea of how to build an 
AST from scratch. It’s easy to then imagine how you might leverage this AST 
to construct a compiler that would parse strings and generate code, allowing 
you to implement your own syntax to Python! This is exactly what led to the 
development of the Hy project, which we’ll discuss later in this chapter.

Walking Through an AST
To follow how a tree is built or access particular nodes, you sometimes need 
to walk through your tree, browsing it and iterating over the nodes. You can 
do this with the ast.walk() function. Alternatively, the ast module also pro-
vides NodeTransformer, a class that you can subclass to walk through an AST 
and modify particular nodes. Using NodeTransformer makes it easy to change 
code dynamically, as shown in Listing 9-4.

import ast

class ReplaceBinOp(ast.NodeTransformer):
    """Replace operation by addition in binary operation"""
    def visit_BinOp(self, node):
        return ast.BinOp(left=node.left,
                         op=ast.Add(),
                         right=node.right)

 tree = ast.parse("x = 1/3")
ast.fix_missing_locations(tree)
eval(compile(tree, '', 'exec'))
print(ast.dump(tree))

 print(x)

 tree = ReplaceBinOp().visit(tree)
ast.fix_missing_locations(tree)
print(ast.dump(tree))
eval(compile(tree, '', 'exec'))

 print(x)

Listing 9-4: Walking a tree with NodeTransformer to alter a node

The first tree object built  is an AST that represents the expression 
x = 1/3. Once this is compiled and evaluated, the result of printing x at the 
end of the function  is 0.33333, the expected result of 1/3.

The second tree object  is an instance of ReplaceBinOp, which inher-
its from ast.NodeTransformer. It implements its own version of the ast.
NodeTransformer.visit() method and changes any ast.BinOp operation to 
an ast.BinOp that executes ast.Add. Concretely, this changes any binary 
operator (+, -, /, and so on) to the + operator. When this second tree is 
compiled and evaluated , the result is now 4, which is the result of 1 + 3, 
because the / in the first object is replaced with +.



140   Chapter 9

You can see the execution of the program here:

Module(body=[Assign(targets=[Name(id='x', ctx=Store())],
                    value=BinOp(left=Num(n=1), op=Div(), right=Num(n=3)))])
0.3333333333333333
Module(body=[Assign(targets=[Name(id='x', ctx=Store())],
                    value=BinOp(left=Num(n=1), op=Add(), right=Num(n=3)))])
4

n o T e  If you need to evaluate a string that should return a simple data type, you can use 
ast.literal_eval. As a safer alternative to eval, it prevents the input string from 
executing any code.

Extending flake8 with AST Checks
In Chapter 7, you learned that methods that do not rely on the object state 
should be declared static with the @staticmethod decorator. The problem 
is that a lot of developers simply forget to do so. I’ve personally spent too 
much time reviewing code and asking people to fix this problem.

We’ve seen how to use flake8 to do some automatic checking in the code. 
In fact, flake8 is extensible and can provide even more checks. We’ll write a 
flake8 extension that checks for static method declaration omission by ana-
lyzing the AST.

Listing 9-5 shows an example of one class that omits the static declara-
tion and one that correctly includes it. Write this program out and save it as 
ast_ext.py; we’ll use it in a moment to write our extension.

class Bad(object):
    # self is not used, the method does not need
    # to be bound, it should be declared static
    def foo(self, a, b, c):
        return a + b - c

class OK(object):
    # This is correct
    @staticmethod
    def foo(a, b, c):
        return a + b - c

Listing 9-5: Omitting and including @staticmethod

Though the Bad.foo method works fine, strictly speaking it is more cor-
rect to write it as OK.foo (turn back to Chapter 7 for more detail on why). To 
check whether all the methods in a Python file are correctly declared, we 
need to do the following:

•	 Iterate over all the statement nodes of the AST.

•	 Check that the statement is a class definition (ast.ClassDef).



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   141

•	 Iterate over all the function definitions (ast.FunctionDef) of that class 
statement to check whether it is already declared with @staticmethod.

•	 If the method is not declared static, check whether the first argument 
(self) is used somewhere in the method. If self is not used, the method 
can be tagged as potentially miswritten.

The name of our project will be ast_ext. To register a new plugin in 
flake8, we need to create a packaged project with the usual setup.py and 
setup.cfg files. Then, we just need to add an entry point in the setup.cfg of 
our ast_ext project.

[entry_points]
flake8.extension =
    --snip--
    H904 = ast_ext:StaticmethodChecker
    H905 = ast_ext:StaticmethodChecker

Listing 9-6: Allowing flake8 plugins for our chapter

In Listing 9-6, we also register two flake8 error codes. As you’ll notice 
later, we are actually going to add an extra check to our code while we’re 
at it!

The next step is to write the plugin. 

Writing the Class
Since we are writing a flake8 check of the AST, the plugin needs to be a 
class following a certain signature, as shown in Listing 9-7.

class StaticmethodChecker(object):
    def __init__(self, tree, filename):
        self.tree = tree

    def run(self):
        pass

Listing 9-7: The class for checking the AST

The default template is easy to understand: it stores the tree locally for 
use in the run() method, which will yield the problems that are discovered. 
The value that will be yielded must follow the expected PEP 8 signature: a 
tuple of the form (lineno, col_offset, error_string, code).

Ignoring Irrelevant Code
As indicated earlier, the ast module provides the walk() function, which 
allows you to iterate easily on a tree. We’ll use that to walk through the AST 
and find out what to check and what not to check.

First, let’s write a loop that ignores the statements that are not class 
definitions. Add this to your ast_ext project, as shown in Listing 9-8; code 
that should stay the same is grayed out.



142   Chapter 9

class StaticmethodChecker(object):
    def __init__(self, tree, filename):
        self.tree = tree

    def run(self):
        for stmt in ast.walk(self.tree):
            # Ignore non-class
            if not isinstance(stmt, ast.ClassDef):
                continue

Listing 9-8: Ignoring statements that are not class definitions

The code in Listing 9-8 is still not checking for anything, but now it 
knows how to ignore statements that are not class definitions. The next step 
is to set our checker to ignore anything that is not a function definition.

for stmt in ast.walk(self.tree):
    # Ignore non-class
    if not isinstance(stmt, ast.ClassDef):
        continue
    # If it's a class, iterate over its body member to find methods
    for body_item in stmt.body:
        # Not a method, skip
        if not isinstance(body_item, ast.FunctionDef):
            continue

Listing 9-9: Ignoring statements that are not function definitions

In Listing 9-9, we ignore irrelevant statements by iterating over the 
attributes of the class definition. 

Checking for the Correct Decorator
We’re all set to write the checking method, which is stored in the body_item 
attribute. First, we need to check whether the method that’s being checked 
is already declared as static. If it is, we don’t have to do any further checking 
and can bail out.

for stmt in ast.walk(self.tree):
    # Ignore non-class
    if not isinstance(stmt, ast.ClassDef):
        continue
    # If it's a class, iterate over its body member to find methods
    for body_item in stmt.body:
        # Not a method, skip
        if not isinstance(body_item, ast.FunctionDef):
            continue
        # Check that it has a decorator
        for decorator in body_item.decorator_list:
            if (isinstance(decorator, ast.Name)
               and decorator.id == 'staticmethod'):
                # It's a static function, it's OK
                break



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   143

        else:
            # Function is not static, we do nothing for now
            Pass

Listing 9-10: Checking for the static decorator

Note that in Listing 9-10, we use the special for/else form of Python, 
where the else is evaluated unless we use break to exit the for loop. At this 
point, we’re able to detect whether a method is declared static.

Looking for self
The next step is to check whether the method that isn’t declared as static 
uses the self argument. First, check whether the method includes any argu-
ments at all, as shown in Listing 9-11.

--snip--
        # Check that it has a decorator
        for decorator in body_item.decorator_list:
            if (isinstance(decorator, ast.Name)
               and decorator.id == 'staticmethod'):
                # It's a static function, it's OK
                break
        else:
            try:
                first_arg = body_item.args.args[0]
            except IndexError:
                yield (
                    body_item.lineno,
                    body_item.col_offset,
                    "H905: method misses first argument",
                    "H905",
                )
                # Check next method
                Continue

Listing 9-11: Checking the method for arguments

We finally added a check! This try statement in Listing 9-11 grabs the 
first argument from the method signature. If the code fails to retrieve 
the first argument from the signature because a first argument doesn’t 
exist, we already know there’s a problem: you can’t have a bound method 
without the self argument. If the plugin detects that case, it raises the H905 
error code we set earlier, signaling a method that misses its first argument.

n o T e  PEP 8 codes follow a particular format for error codes (a letter followed by a number), 
but there are no rules as to which code to pick. You could come up with any other code 
for this error, as long as it’s not already used by PEP 8 or another extension.

Now you know why we registered two error codes in setup.cfg: we had a 
good opportunity to kill two birds with one stone.



144   Chapter 9

The next step is to check whether the self argument is used in the code 
of the method.

--snip--
            try:
                first_arg = body_item.args.args[0]
            except IndexError:
                yield (
                    body_item.lineno,
                    body_item.col_offset,
                    "H905: method misses first argument",
                    "H905",
                )
                # Check next method
                continue
            for func_stmt in ast.walk(body_item):
                # The checking method must differ between Python 2 and Python 3
                if six.PY3:
                    if (isinstance(func_stmt, ast.Name)
                       and first_arg.arg == func_stmt.id):
                        # The first argument is used, it's OK
                        break
                else:
                    if (func_stmt != first_arg
                       and isinstance(func_stmt, ast.Name)
                       and func_stmt.id == first_arg.id):
                        # The first argument is used, it's OK
                        break
            else:
                yield (
                    body_item.lineno,
                    body_item.col_offset,
                    "H904: method should be declared static",
                    "H904",
                )

Listing 9-12: Checking the method for the self argument

To check whether the self argument is used in the method’s body, the 
plugin in Listing 9-12 iterates recursively, using ast.walk on the body and 
looking for the use of the variable named self. If the variable isn’t found, 
the program finally yields the H904 error code. Otherwise, nothing happens, 
and the code is considered sane.

n o T e  As you may have noticed, the code walks over the module AST definition several 
times. There might be some degree of optimization to browsing the AST in only one 
pass, but I’m not sure it’s worth it, given how the tool is actually used. I’ll leave that 
exercise to you, dear reader.

Knowing the Python AST is not strictly necessary for using Python, 
but it does give powerful insight into how the language is built and how it 
works. It thus gives you a better understanding of how the code you write is 
being used under the hood.



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   145

A Quick Introduction to Hy
Now that you have a good understanding of how Python AST works, you can 
start dreaming of creating a new syntax for Python. You could parse this new 
syntax, build an AST out of it, and compile it down to Python code.

This is exactly what Hy does. Hy is a Lisp dialect that parses a Lisp-like 
language and converts it to regular Python AST, making it fully compatible 
with the Python ecosystem. You could compare it to what Clojure is to Java. 
Hy could fill a book by itself, so we will only skim over it. Hy uses the syntax 
and some features of the Lisp family of languages: it’s functionally oriented, 
provides macros, and is easily extensible.

If you’re not already familiar with Lisp—and you should be—the Hy 
syntax will look familiar. Once you install Hy (by running pip install hy), 
launching the hy interpreter will give you a standard REPL prompt from 
which you can start to interact with the interpreter, as shown in Listing 9-13.

% hy
hy 0.9.10
=> (+ 1 2)
3

Listing 9-13: Interacting with the Hy interpreter

For those not familiar with the Lisp syntax, parentheses are used to 
construct lists. If a list is unquoted, it is evaluated: the first element must be 
a function, and the rest of the items from the list are passed as arguments. 
Here the code (+ 1 2) is equivalent to 1 + 2 in Python.

In Hy, most constructs, such as function definitions, are mapped from 
Python directly. 

=> (defn hello [name]
...  (print "Hello world!")
...  (print (% "Nice to meet you %s" name)))
=> (hello "jd")
Hello world!
Nice to meet you jd

Listing 9-14: Mapping a function definition from Python

As shown in Listing 9-14, internally Hy parses the code provided, con-
verts it to a Python AST, compiles it, and evaluates it. Fortunately, Lisp is an 
easy tree to parse: each pair of parentheses represents a node of the tree, 
meaning the conversion is actually easier than for the native Python syntax!

Class definition is supported through the defclass construct, which is 
inspired by the Common Lisp Object System (CLOS).

(defclass A [object]
  [[x 42]



146   Chapter 9

   [y (fn [self value]
        (+ self.x value))]])

Listing 9-15: Defining a class with defclass

Listing 9-15 defines a class named A, which inherits from object, with a 
class attribute x whose value is 42; then a method y returns the x attribute 
plus a value passed as argument.

What’s really wonderful is that you can import any Python library directly 
into Hy and use it with no penalty. Use the import() function to import a 
module, as shown in Listing 9-16, just as you would with regular Python.

=> (import uuid)
=> (uuid.uuid4)
UUID('f823a749-a65a-4a62-b853-2687c69d0e1e')
=> (str (uuid.uuid4))
'4efa60f2-23a4-4fc1-8134-00f5c271f809'

Listing 9-16: Importing regular Python modules

Hy also has more advanced constructs and macros. In Listing 9-17, 
admire what the cond() function can do for you instead of the classic but 
verbose if/elif/else. 

(cond
 [(> somevar 50)
  (print "That variable is too big!")]
 [(< somevar 10)
  (print "That variable is too small!")]
 [true
  (print "That variable is jusssst right!")])

Listing 9-17: Using cond instead of if/elif/else

The cond macro has the following signature: (cond [condition_expression 
return_expression] ...). Each condition expression is evaluated, starting 
with the first: as soon as one of the condition expressions returns a true 
value, the return expression is evaluated and returned. If no return expres-
sion is provided, then the value of the condition expression is returned. 
Thus, cond is equivalent to an if/elif construct, except that it can return 
the value of the condition expression without having to evaluate it twice or 
store it in a temporary variable!

Hy allows you to jump into the Lisp world without leaving your comfort 
zone too far behind you, since you’re still writing Python. The hy2py tool 
can even show you what your Hy code would look like once translated into 
Python. While Hy is not widely used, it is a great tool to show the potential 
of the Python language. If you’re interested in learning more, I suggest you 
check out the online documentation and join the community.



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   147

Summary
Just like any other programming language, Python source code can be rep-
resented using an abstract tree. You’ll rarely use the AST directly, but when 
you understand how it works, it can provide a helpful perspective.

Paul Tagliamonte on the AST and Hy
Paul created Hy in 2013, and, as a Lisp lover, I joined him in this fabulous 
adventure. Paul is currently a developer at Sunlight Foundation.

How did you learn to use the AST correctly, and do you have any advice 
for people looking at it?

The AST is extremely underdocumented, so most knowledge comes 
from generated ASTs that have been reverse engineered. By writing 
up simple Python scripts, one can use something similar to import ast; 
ast.dump(ast .parse("print foo")) to generate an equivalent AST to help 
with the task. With a bit of guesswork, and some persistence, it’s not 
untenable to build up a basic understanding this way.

At some point, I’ll take on the task of documenting my understand-
ing of the AST module, but I find writing code is the best way to learn 
the AST.

How does Python’s AST differ between versions and uses?
Python’s AST is not private, but it’s not a public interface either. No 
stability is guaranteed from version to version—in fact, there are some 
rather annoying differences between Python 2 and 3 and even within 
different Python 3 releases. In addition, different implementations may 
interpret the AST differently or even have a unique AST. Nothing says 
Jython, PyPy, or CPython must deal with the Python AST in the same way.

For instance, CPython can handle slightly out-of-order AST entries 
(by the lineno and col_offset), whereas PyPy will throw an assertion 
error. Though sometimes annoying, the AST is generally sane. It’s not 
impossible to build an AST that works on a vast number of Python 
instances. With a conditional or two, it’s only mildly annoying to create 
an AST that works on CPython 2.6 through 3.3 and PyPy, making this 
tool quite handy.

What was your process in creating Hy?
I started on Hy following a conversation about how useful it would be to 
have a Lisp that compiles to Python rather than Java’s JVM (Clojure). 
A few short days later, and I had the first version of Hy. This version 
resembled a Lisp and even worked like a proper Lisp in some ways, 
but it was slow. I mean, really slow. It was about an order of magnitude 
slower than native Python, since the Lisp runtime itself was imple-
mented in Python.



148   Chapter 9

Frustrated, I almost gave up, but then a coworker suggested using 
the AST to implement the runtime, rather than implementing the run-
time in Python. This suggestion was the catalyst for the entire project. I 
spent my entire holiday break in 2012 hacking on Hy. A week or so later, 
I had something that resembled the current Hy codebase.

Just after getting enough of Hy working to implement a basic Flask 
app, I gave a talk at Boston Python about the project, and the reception 
was incredibly warm—so warm, in fact, that I start to view Hy as a good 
way to teach people about Python internals, such as how the REPL works, 
PEP 302 import hooks, and the Python AST. This was a good introduc-
tion to the concept of code that writes code.

I rewrote chunks of the compiler to fix some philosophical issues in 
the process, leading us to the current iteration of the codebase—which 
has stood up quite well!

Learning Hy is also a good way to begin understanding how to read 
Lisp. Users can get comfortable with s-expressions in an environment 
they know and even use libraries they’re already using, easing the tran-
sition to other Lisps, such as Common Lisp, Scheme, or Clojure.

How interoperable with Python is Hy? 
Hy is amazingly interoperable. So much so that pdb can properly 
debug Hy without you having to make any changes at all. I’ve written 
Flask apps, Django apps, and modules of all sorts with Hy. Python can 
import Python, Hy can import Hy, Hy can import Python, and Python 
can import Hy. This is what really makes Hy unique; other Lisp vari-
ants like Clojure are purely unidirectional. Clojure can import Java, 
but Java has one hell of a time importing Clojure. 

Hy works by translating Hy code (in s-expressions) into the Python 
AST almost directly. This compilation step means the generated byte-
code is fairly sane stuff, which means Python has a very hard time of 
even telling the module isn’t written in Python at all.

Common Lisp-isms, such as *earmuffs* or using-dashes are fully 
supported by translating them into a Python equivalent (in this case, 
*earmuffs* becomes EARMUFFS, and using-dashes becomes using_dashes), 
which means Python doesn’t have a hard time using them at all.

Ensuring that we have really good interoperability is one of our 
highest priorities, so if you see any bugs—file them!

What are the advantages and disadvantages of choosing Hy?
One advantage of Hy is that it has a full macro system, which Python 
struggles with. Macros are special functions that alter the code during 
the compile step. This makes it easy to create new domain-specific 
languages, which are composed of the base language (in this case, 
Hy/Python) along with many macros that allow uniquely expressive 
and succinct code.



The Abstract Syntax Tree, Hy, and Lisp-like Attributes   149

As for downsides, Hy, by virtue of being a Lisp written in 
s-expressions, suffers from the stigma of being hard to learn, 
read, or maintain. People might be averse to working on projects 
using Hy for fear of its complexity.

Hy is the Lisp everyone loves to hate. Python folks may not enjoy 
its syntax, and Lispers may avoid it because Hy uses Python objects 
directly, meaning the behavior of fundamental objects can sometimes 
be surprising to the seasoned Lisper.

Hopefully people will look past its syntax and consider exploring 
parts of Python previously untouched.





10
P e r f o r m a n c e s  a n d 

o P t i m i z a t i o n s

Optimizing is rarely the first thing you 
think about when developing, but there 

always comes a time when optimizing for 
better performance will be appropriate. 

That’s not to say you should write a program with 
the idea that it will be slow, but thinking about opti-
mization without first figuring out the right tools to 
use and doing the proper profiling is a waste of time. 
As Donald Knuth wrote, “Premature optimization is 
the root of all evil.”1 

Here, I’ll show you how to use the right approach to write fast code and 
where to look when more optimization is needed. Many developers try to 
guess where Python might be slower or faster. Rather than speculating, this 

1. Donald Knuth, “Structured Programming with go to Statements,” ACM Computing Surveys 6, 
no. 4 (1974): 261–301.



152   Chapter 10

chapter will help you understand how to profile your application so you’ll 
know what part of your program is slowing things down and where the 
bottlenecks are.

Data Structures
Most programming problems can be solved in an elegant and simple manner 
with the right data structures—and Python provides many data structures to 
choose from. Learning to leverage those existing data structures results in 
cleaner and more stable solutions than coding custom data structures.

For example, everybody uses dict, but how many times have you seen 
code trying to access a dictionary by catching the KeyError exception, as 
shown here:

def get_fruits(basket, fruit):
    try:
        return basket[fruit]
    except KeyError:
        return None

Or by checking whether the key is present first:

def get_fruits(basket, fruit):
    if fruit in basket:
        return basket[fruit]

If you use the get() method already provided by the dict class, you can 
avoid having to catch an exception or checking the key’s presence in the 
first place:

def get_fruits(basket, fruit):
    return basket.get(fruit)

The method dict.get() can also return a default value instead of None; 
just call it with a second argument:

def get_fruits(basket, fruit):
    # Return the fruit, or Banana if the fruit cannot be found.
    return basket.get(fruit, Banana())

Many developers are guilty of using basic Python data structures with-
out being aware of all the methods they provide. This is also true for sets; 
methods in set data structures can solve many problems that would other-
wise need to be addressed by writing nested for/if blocks. For example, 
developers often use for/if loops to determine whether an item is in a list, 
like this:

def has_invalid_fields(fields):
    for field in fields:



Performances and Optimizations   153

        if field not in ['foo', 'bar']:
            return True
    return False

The loop iterates over each item in the list and checks that all items are 
either foo or bar. But you can write this more efficiently, removing the need 
for a loop:

def has_invalid_fields(fields):
    return bool(set(fields) - set(['foo', 'bar']))

This changes the code to convert the fields to a set, and it gets the rest 
of the set by subtracting the set(['foo', 'bar']). It then converts the set to a 
Boolean value, which indicates whether any items that aren’t foo and bar are 
left over. By using sets, there is no need to iterate over any list and to check 
items one by one. A single operation on two sets, done internally by Python, 
is faster.

Python also has more advanced data structures that can greatly reduce 
the burden of code maintenance. For example, take a look at Listing 10-1.

def add_animal_in_family(species, animal, family):
    if family not in species:
        species[family] = set()
    species[family].add(animal)

species = {}
add_animal_in_family(species, 'cat', 'felidea')

Listing 10-1: Adding an entry in a dictionary of sets 

This code is perfectly valid, but how many times will your programs 
require a variation of Listing 10-1? Tens? Hundreds?

Python provides the collections.defaultdict structure, which solves the 
problem in an elegant way:

import collections

def add_animal_in_family(species, animal, family):
    species[family].add(animal)

species = collections.defaultdict(set)
add_animal_in_family(species, 'cat', 'felidea')

Each time you try to access a nonexistent item from your dict, the 
defaultdict will use the function that was passed as argument to its con-
structor to build a new value, instead of raising a KeyError. In this case, the 
set() function is used to build a new set each time we need it.

The collections module offers a few more data structures that you can 
use to solve other kinds of problems. For example, imagine that you want 



154   Chapter 10

to count the number of distinct items in an iterable. Let’s take a look at 
the collections.Counter() method, which provides methods that solve this 
problem:

>>> import collections
>>> c = collections.Counter("Premature optimization is the root of all evil.")
>>> c
>>> c['P']  # Returns the name of occurrence of the letter 'P'
1
>>> c['e']  # Returns the name of occurrence of the letter 'e'
4
>>> c.most_common(2)  # Returns the 2 most common letters
[(' ', 7), ('i', 5)]

The collections.Counter object works with any iterable that has hashable 
items, removing the need to write your own counting functions. It can eas-
ily count the number of letters in a string and return the top n most com-
mon items of an iterable. You might have tried to implement something like 
this on your own if you were not aware it was already provided by Python’s 
Standard Library.

With the right data structure, the correct methods, and—obviously—
an adequate algorithm, your program should perform well. However, if it is 
not performing well enough, the best way to get clues about where it might 
be slow and need optimization is to profile your code.

Understanding Behavior Through Profiling
Profiling is a form of dynamic program analysis that allows us to under-
stand how a program behaves. It allows us to determine where there might 
be bottlenecks and a need for optimization. A profile of a program takes 
the form of a set of statistics that describe how often parts of the program 
execute and for how long. 

Python provides a few tools for profiling your program. One, cProfile, is 
part of the Python Standard Library and does not require installation. We’ll 
also look at the dis module, which can disassemble Python code into smaller 
parts, making it easier to understand what is happening under the hood.

cProfile
Python has included cProfile by default since Python 2.5. To use cProfile, 
call it with your program using the syntax python –m cProfile <program>. This 
should load and enable the cProfile module, then run the regular program 
with instrumentation enabled, as shown in Listing 10-2.

$ python -m cProfile myscript.py
         343 function calls (342 primitive calls) in 0.000 seconds

   Ordered by: standard name



Performances and Optimizations   155

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.000    0.000 :0(_getframe)
        1    0.000    0.000    0.000    0.000 :0(len)
      104    0.000    0.000    0.000    0.000 :0(setattr)
        1    0.000    0.000    0.000    0.000 :0(setprofile)
        1    0.000    0.000    0.000    0.000 :0(startswith)
      2/1    0.000    0.000    0.000    0.000 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 StringIO.py:30(<module>)
        1    0.000    0.000    0.000    0.000 StringIO.py:42(StringIO)

Listing 10-2: Default output of cProfile used against a Python script

Listing 10-2 shows the output of running a simple script with cProfile. 
This tells you the number of times each function in the program was called 
and the time spent on its execution. You can also use the -s option to sort 
by other fields; for example, -s time would sort the results by internal time.

We can visualize the information generated by cProfile using a great 
tool called KCacheGrind. This tool was created to deal with programs 
written in C, but luckily we can use it with Python data by converting the 
data to a call tree. 

The cProfile module has an -o option that allows you to save the profiling 
data, and pyprof2calltree can convert data from one format to the other. First, 
install the converter with the following:

$ pip install pyprof2calltree 

Then run the converter as shown in Listing 10-3 to both convert the 
data (-i option) and run KCacheGrind with the converted data (-k option).

$ python -m cProfile -o myscript.cprof myscript.py
$ pyprof2calltree -k -i myscript.cprof

Listing 10-3: Running cProfile and launching KCacheGrind

Once KCacheGrind opens, it will display information that looks like 
that in Figure 10-1. With these visual results, you can use the call graph to 
follow the percentage of time spent in each function, allowing you to deter-
mine what part of your program might be consuming too many resources.

The easiest way to read KCacheGrind is to start with the table on the 
left of the screen, which lists all the functions and methods executed by 
your program. You can sort these by execution time, then identify the one 
that consumes the most CPU time and click on it. 

The right panels of KCacheGrind can show you which functions have 
called that function and how many times, as well as which other functions 
are being called by the function. The call graph of your program, including 
the execution time of each part, is easy to navigate.

This should allow you to better understand which parts of your code 
might need optimization. The way to optimize the code is up to you and 
depends on what your program is trying to achieve!



156   Chapter 10

Figure 10-1: Example of KCacheGrind output

While retrieving information about how your program runs and visual-
izing it works well to get a macroscopic view of your program, you might 
need a more microscopic view of some parts of the code to inspect its ele-
ments more closely. In such a case, I find it better to rely on the dis module 
to find out what’s going on behind the scenes. 

Disassembling with the dis Module
The dis module is a disassembler of Python bytecode. Taking code apart 
can be useful to understand what’s going on behind each line so you can 
properly optimize it. For example, Listing 10-4 shows the dis.dis() function, 
which disassembles whichever function you pass as a parameter and prints 
the list of bytecode instructions that are run by the function. 

>>> def x():
...     return 42
...
>>> import dis
>>> dis.dis(x)
  2           0 LOAD_CONST               1 (42)
              3 RETURN_VALUE

Listing 10-4: Disassembling a function

In Listing 10-4, the function x is disassembled and its constituents, 
made of bytecode instructions, are printed. There are only two operations 
here: loading a constant (LOAD_CONST), which is 42, and returning that value 
(RETURN_VALUE).



Performances and Optimizations   157

To see dis in action and how it can be useful, we’ll define two functions 
that do the same thing—concatenate three letters—and disassemble them 
to see how they do their tasks in different ways:

abc = ('a', 'b', 'c')

def concat_a_1():
    for letter in abc:
            abc[0] + letter

def concat_a_2():
    a = abc[0]
    for letter in abc:
            a + letter

Both functions appear to do the same thing, but if we disassemble them 
using dis.dis, as shown in Listing 10-5, we’ll see that the generated bytecode 
is a bit different.

>>> dis.dis(concat_a_1)
  2           0 SETUP_LOOP              26 (to 29)
              3 LOAD_GLOBAL              0 (abc)
              6 GET_ITER
        >>    7 FOR_ITER                18 (to 28)
             10 STORE_FAST               0 (letter)

  3          13 LOAD_GLOBAL              0 (abc)
             16 LOAD_CONST               1 (0)
             19 BINARY_SUBSCR
             20 LOAD_FAST                0 (letter)
             23 BINARY_ADD
             24 POP_TOP
             25 JUMP_ABSOLUTE            7
        >>   28 POP_BLOCK
        >>   29 LOAD_CONST               0 (None)
             32 RETURN_VALUE
>>> dis.dis(concat_a_2)
  2           0 LOAD_GLOBAL              0 (abc)
              3 LOAD_CONST               1 (0)
              6 BINARY_SUBSCR
              7 STORE_FAST               0 (a)

  3          10 SETUP_LOOP              22 (to 35)
             13 LOAD_GLOBAL              0 (abc)
             16 GET_ITER
        >>   17 FOR_ITER                14 (to 34)
             20 STORE_FAST               1 (letter)

  4          23 LOAD_FAST                0 (a)
             26 LOAD_FAST                1 (letter)
             29 BINARY_ADD
             30 POP_TOP
             31 JUMP_ABSOLUTE           17
        >>   34 POP_BLOCK



158   Chapter 10

        >>   35 LOAD_CONST               0 (None)
             38 RETURN_VALUE

Listing 10-5: Disassembling functions that concatenate strings

In the second function in Listing 10-5, we store abc[0] in a temporary 
variable before running the loop. This makes the bytecode that’s executed 
inside the loop a little smaller than the bytecode for the first function, as 
we avoid having to do the abc[0] lookup for each iteration. Measured using 
timeit, the second version is 10 percent faster than the first function; it takes 
a whole microsecond less to execute! Obviously this microsecond is not worth 
optimizing for unless you call this function billions of times, but this is the 
kind of insight that the dis module can provide.

Whether you rely on “tricks” such as storing the value outside the loop 
depends on the situation—ultimately, it should be the compiler’s work 
to optimize this kind of thing. On the other hand, it’s difficult for the 
compiler to be sure that optimization wouldn’t have negative side effects 
because Python is heavily dynamic. In Listing 10-5, using abc[0] will call 
abc.__getitem__, which could have side effects if it has been overridden 
by inheritance. Depending on the version of the function you use, the 
abc.__getitem__ method will be called once or several times, which might 
make a difference. Therefore, be careful when writing and optimizing 
your code!

Defining Functions Efficiently
One common mistake I have found when reviewing code is definitions of 
functions within functions. This is inefficient because the function is then 
redefined repeatedly and needlessly. For example, Listing 10-6 shows the 
y() function being defined multiple times.

>> import dis
>>> def x():
...     return 42
...
>>> dis.dis(x)
  2           0 LOAD_CONST               1 (42)
              3 RETURN_VALUE
>>> def x():
...     def y():
...             return 42
...     return y()
...
>>> dis.dis(x)
  2           0 LOAD_CONST               1 (<code object y at 
x100ce7e30, file "<stdin>", line 2>)
              3 MAKE_FUNCTION            0
              6 STORE_FAST               0 (y)

  4           9 LOAD_FAST                0 (y)



Performances and Optimizations   159

             12 CALL_FUNCTION            0
             15 RETURN_VALUE

Listing 10-6: Function redefinition

Listing 10-6 shows the calling of MAKE_FUNCTION, STORE_FAST, LOAD_FAST, and 
CALL_FUNCTION, which requires many more opcodes than those needed to 
return 42, as seen in Listing 10-4. 

The only case in which you’d need to define a function within a func-
tion is when building a function closure, and this is a perfectly identified 
use case in Python’s opcodes with LOAD_CLOSURE, as shown in Listing 10-7.

>>> def x():
...     a = 42
...     def y():
...             return a
...     return y()
...
>>> dis.dis(x)
  2           0 LOAD_CONST               1 (42)
              3 STORE_DEREF              0 (a)

  3           6 LOAD_CLOSURE             0 (a)
              9 BUILD_TUPLE              1
             12 LOAD_CONST               2 (<code object y at 
x100d139b0, file "<stdin>", line 3>)
             15 MAKE_CLOSURE             0
             18 STORE_FAST               0 (y)

  5          21 LOAD_FAST                0 (y)
             24 CALL_FUNCTION            0
             27 RETURN_VALUE

Listing 10-7: Defining a closure

While you probably won’t need to use it every day, disassembling code is 
a handy tool for when you want a closer look at what happens under the hood.

Ordered Lists and bisect
Next, let’s look at optimizing lists. If a list is unsorted, the worst-case sce-
nario for finding a particular item’s position in the list has a complexity of 
O(n), meaning that in the worst case, you’ll find your item after iterating over 
every item of the list.

The usual solution for optimizing this problem is to use a sorted list 
instead. Sorted lists use a bisecting algorithm for lookup to achieve a 
retrieve time of O(log n). The idea is to recursively split the list in half and 
look on which side, left or right, the item must appear in and so which side 
should be searched next.

Python provides the bisect module, which contains a bisection algo-
rithm, as shown in Listing 10-8.



160   Chapter 10

>>> farm = sorted(['haystack', 'needle', 'cow', 'pig'])
>>> bisect.bisect(farm, 'needle')
3
>>> bisect.bisect_left(farm, 'needle')
2
>>> bisect.bisect(farm, 'chicken')
0
>>> bisect.bisect_left(farm, 'chicken')
0
>>> bisect.bisect(farm, 'eggs')
1
>>> bisect.bisect_left(farm, 'eggs')
1

Listing 10-8: Using bisect to find a needle in a haystack

As shown in Listing 10-8, the bisect.bisect() function returns the posi-
tion where an element should be inserted to keep the list sorted. Obviously, 
this only works if the list is properly sorted to begin with. Initial sorting 
allows to us get the theoretical index of an item: bisect() does not return 
whether the item is in the list but where the item should be if it is in the 
list. Retrieving the item at this index will answer the question about 
whether the item is in the list.

If you wish to insert the element into the correct sorted position imme-
diately, the bisect module provides the insort_left() and insort_right() func-
tions, as shown in Listing 10-9.

>>> farm
['cow', 'haystack', 'needle', 'pig']
>>> bisect.insort(farm, 'eggs')
>>> farm
['cow', 'eggs', 'haystack', 'needle', 'pig']
>>> bisect.insort(farm, 'turkey')
>>> farm
['cow', 'eggs', 'haystack', 'needle', 'pig', 'turkey']

Listing 10-9: Inserting an item in a sorted list

Using the bisect module, you could also create a special SortedList 
class inheriting from list to create a list that is always sorted, as shown in 
Listing 10-10:

import bisect
import unittest

class SortedList(list):
    def __init__(self, iterable):
        super(SortedList, self).__init__(sorted(iterable))

    def insort(self, item):
        bisect.insort(self, item)



Performances and Optimizations   161

    def extend(self, other):
        for item in other:
            self.insort(item)

    @staticmethod
    def append(o):
        raise RuntimeError("Cannot append to a sorted list")

    def index(self, value, start=None, stop=None):
        place = bisect.bisect_left(self[start:stop], value)
        if start:
            place += start
        end = stop or len(self)
        if place < end and self[place] == value:
            return place
        raise ValueError("%s is not in list" % value)

class TestSortedList(unittest.TestCase):
    def setUp(self):
        self.mylist = SortedList(
            ['a', 'c', 'd', 'x', 'f', 'g', 'w']
        )

    def test_sorted_init(self):
        self.assertEqual(sorted(['a', 'c', 'd', 'x', 'f', 'g', 'w']),
                         self.mylist)

    def test_sorted_insort(self):
        self.mylist.insort('z')
        self.assertEqual(['a', 'c', 'd', 'f', 'g', 'w', 'x', 'z'],
                         self.mylist)
        self.mylist.insort('b')
        self.assertEqual(['a', 'b', 'c', 'd', 'f', 'g', 'w', 'x', 'z'],
                         self.mylist)

    def test_index(self):
        self.assertEqual(0, self.mylist.index('a'))
        self.assertEqual(1, self.mylist.index('c'))
        self.assertEqual(5, self.mylist.index('w'))
        self.assertEqual(0, self.mylist.index('a', stop=0))
        self.assertEqual(0, self.mylist.index('a', stop=2))
        self.assertEqual(0, self.mylist.index('a', stop=20))
        self.assertRaises(ValueError, self.mylist.index, 'w', stop=3)
        self.assertRaises(ValueError, self.mylist.index, 'a', start=3)
        self.assertRaises(ValueError, self.mylist.index, 'a', start=333)

    def test_extend(self):
        self.mylist.extend(['b', 'h', 'j', 'c'])
        self.assertEqual(
            ['a', 'b', 'c', 'c', 'd', 'f', 'g', 'h', 'j', 'w', 'x']
            self.mylist)

Listing 10-10: A SortedList object implementation



162   Chapter 10

Using a list class like this is slightly slower when it comes to inserting 
the item, because the program has to look for the right spot to insert it. 
However, this class is faster at using the index() method than its parent. 
Obviously, one shouldn’t use the list.append() method on this class: you 
can’t append an item at the end of the list or it could end up unsorted!

Many Python libraries implement various versions of Listing 10-10 for 
many more data types, such as binary or red-black tree structures. The 
blist and bintree Python packages contain code that can be used for these 
purposes and are a handy alternative to implementing and debugging your 
own version.

In the next section, we’ll see how the native tuple data type provided by 
Python can be leveraged to make your Python code a little faster.

namedtuple and Slots
Often in programming, you’ll need to create simple objects that possess 
only a few fixed attributes. A simple implementation might be something 
along these lines:

class Point(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y

This definitely gets the job done. However, there is a downside to this 
approach. Here we’re creating a class that inherits from the object class, so 
by using this Point class, you are instantiating full objects and allocating a 
lot of memory.

In Python, regular objects store all of their attributes inside a diction-
ary, and this dictionary is itself stored in the __dict__ attribute, as shown in 
Listing 10-11.

>>> p = Point(1, 2)
>>> p.__dict__
{'y': 2, 'x': 1}
>>> p.z = 42
>>> p.z
42
>>> p.__dict__
{'y': 2, 'x': 1, 'z': 42}

Listing 10-11: How attributes are stored internally in a Python object

For Python, the advantage of using a dict is that it allows you to add as 
many attributes as you want to an object. The drawback is that using a dic-
tionary to store these attributes is expensive in terms of memory—you need 
to store the object, the keys, the value references, and everything else. That 
makes it slow to create and slow to manipulate, with a high memory cost. 



Performances and Optimizations   163

As an example of this unnecessary memory usage, consider the follow-
ing simple class:

class Foobar(object):
    def __init__(self, x):
        self.x = x

This creates a simple Point object with a single attribute named x. Let’s 
check the memory usage of this class using the memory_profiler, a nice Python 
package that allows us to see the memory usage of a program line by line, 
and a small script that creates 100,000 objects, as shown in Listing 10-12.

$ python -m memory_profiler object.py
Filename: object.py

Line #    Mem usage    Increment   Line Contents
     5                             @profile
     6     9.879 MB     0.000 MB   def main():
     7    50.289 MB    40.410 MB       f = [ Foobar(42) for i in range(100000) ]

Listing 10-12: Using memory_profiler on a script using objects

Listing 10-12 demonstrates that creating 100,000 of the objects of 
the Foobar class would consume 40MB of memory. Although 400 bytes 
per object might not sound that big, when you are creating thousands of 
objects, the memory adds up.

There is a way to use objects while avoiding this default behavior of 
dict: classes in Python can define a __slots__ attribute that will list only the 
attributes allowed for instances of this class. Instead of allocating a whole 
dictionary object to store the object attributes, you can use a list object to 
store them. 

If you go through CPython source code and take a look at the Objects/
typeobject.c file, it is quite easy to understand what Python does when __slots__ 
is set on a class. Listing 10-13 is an abbreviated version of the function that 
handles this:

static PyObject *
type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)
{
    --snip--
    /* Check for a __slots__ sequence variable in dict, and count it */
    slots = _PyDict_GetItemId(dict, &PyId___slots__);
    nslots = 0;
    if (slots == NULL) {
        if (may_add_dict)
            add_dict++;
        if (may_add_weak)
            add_weak++;
    }



164   Chapter 10

    else {
        /* Have slots */
        /* Make it into a tuple */
        if (PyUnicode_Check(slots))
            slots = PyTuple_Pack(1, slots);
        else
            slots = PySequence_Tuple(slots);
        /* Are slots allowed? */
        nslots = PyTuple_GET_SIZE(slots);
        if (nslots > 0 && base->tp_itemsize != 0) {
            PyErr_Format(PyExc_TypeError,
                         "nonempty __slots__ "
                         "not supported for subtype of '%s'",
                         base->tp_name);
            goto error;
        }
        /* Copy slots into a list, mangle names and sort them.
           Sorted names are needed for __class__ assignment.
           Convert them back to tuple at the end.
        */
        newslots = PyList_New(nslots - add_dict - add_weak);
        if (newslots == NULL)
            goto error;
        if (PyList_Sort(newslots) == -1) {
            Py_DECREF(newslots);
            goto error;
        }
        slots = PyList_AsTuple(newslots);
        Py_DECREF(newslots);
        if (slots == NULL)
            goto error;
    }
    /* Allocate the type object */
    type = (PyTypeObject *)metatype->tp_alloc(metatype, nslots);
    --snip--
    /* Keep name and slots alive in the extended type object */
    et = (PyHeapTypeObject *)type;
    Py_INCREF(name);
    et->ht_name = name;
    et->ht_slots = slots;
    slots = NULL;
    --snip--
    return (PyObject *)type;

Listing 10-13: An extract from Objects/typeobject.c

As you can see in Listing 10-13, Python converts the content of __slots__ 
into a tuple and then into a list, which it builds and sorts before converting 
the list back into a tuple to use and store in the class. In this way, Python 
can retrieve the values quickly, without having to allocate and use an entire 
dictionary.



Performances and Optimizations   165

It’s easy enough to declare and use such a class. All you need to do is 
to set the __slots__ attribute to a list of the attributes that will be defined in 
the class:

class Foobar(object):
    __slots__ = ('x',)

    def __init__(self, x):
        self.x = x

We can compare the memory usage of the two approaches using the 
memory_profiler Python package, as shown in Listing 10-14.

% python -m memory_profiler slots.py
Filename: slots.py

Line #    Mem usage    Increment   Line Contents
     7                             @profile
     8     9.879 MB     0.000 MB   def main():
     9    21.609 MB    11.730 MB       f = [ Foobar(42) for i in range(100000) ]

Listing 10-14: Running memory_profiler on the script using __slots__

Listing 10-14 shows that this time, less than 12MB of memory was needed 
to create 100,000 objects—or fewer than 120 bytes per object. Thus, by using 
the __slots__ attribute of Python classes, we can reduce memory usage, so 
when we are creating a large number of simple objects, the __slots__ attribute 
is an effective and efficient choice. However, this technique shouldn’t be used 
for performing static typing by hardcoding the list of attributes of every class: 
doing so wouldn’t be in the spirit of Python programs.

The drawback here is that the list of attributes is now fixed. No new 
attribute can be added to the Foobar class at runtime. Due to the fixed 
nature of the attribute list, it’s easy enough to imagine classes where the 
attributes listed would always have a value and where the fields would 
always be sorted in some way.

This is exactly what occurs in the namedtuple class from the collection 
module. This namedtuple class allows us to dynamically create a class that 
will inherit from the tuple class, thus sharing characteristics such as being 
immutable and having a fixed number of entries. 

Rather than having to reference them by index, namedtuple provides the 
ability to retrieve tuple elements by referencing a named attribute. This 
makes the tuple easier to access for humans, as shown in Listing 10-15.

>>> import collections
>>> Foobar = collections.namedtuple('Foobar', ['x'])
>>> Foobar = collections.namedtuple('Foobar', ['x', 'y'])
>>> Foobar(42, 43)



166   Chapter 10

Foobar(x=42, y=43)
>>> Foobar(42, 43).x
42
>>> Foobar(42, 43).x = 44
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>> Foobar(42, 43).z = 0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Foobar' object has no attribute 'z'
>>> list(Foobar(42, 43))
[42, 43]

Listing 10-15: Using namedtuple to reference tuple elements

Listing 10-15 shows how you can create a simple class with just one line 
of code and then instantiate it. We can’t change any attributes of objects of 
this class or add attributes to them, both because the class inherits from 
namedtuple and because the __slots__ value is set to an empty tuple, avoiding 
the creation of the __dict__. Since a class like this would inherit from tuple, 
we can easily convert it to a list.

Listing 10-16 demonstrates the memory usage of the namedtuple class 
factory. 

% python -m memory_profiler namedtuple.py
Filename: namedtuple.py

Line #    Mem usage    Increment   Line Contents
     4                             @profile
     5     9.895 MB     0.000 MB   def main():
     6    23.184 MB    13.289 MB       f = [ Foobar(42) for i in range(100000) ]

Listing 10-16: Using namedtuple to run memory_profiler on a script 

At around 13MB for 100,000 objects, using namedtuple is slightly less effi-
cient than using an object with __slots__, but the bonus is that it is compat-
ible with the tuple class. It can therefore be passed to many native Python 
functions and libraries that expect an iterable as an argument. A namedtuple 
class factory also enjoys the various optimizations that exist for tuples: for 
example, tuples with fewer items than PyTuple_MAXSAVESIZE (20 by default) 
will use a faster memory allocator in CPython.

The namedtuple class also provides a few extra methods that, even if pre-
fixed by an underscore, are actually intended to be public. The _asdict() 
method can convert the namedtuple to a dict instance, the _make() method 
allows you to convert an existing iterable object to this class, and _replace() 
returns a new instance of the object with some fields replaced.

Named tuples are a great replacement for small objects that consists 
of only a few attributes and do not require any custom methods—consider 
using them rather than dictionaries, for example. If your data type needs 



Performances and Optimizations   167

methods, has a fixed list of attributes, and might be instantiated thousands 
of times, then creating a custom class using __slots__ might be a good idea 
to save some memory.

Memoization
Memoization is an optimization technique used to speed up function calls 
by caching their results. The results of a function can be cached only if the 
function is pure, meaning that it has no side effects and does not depend on 
any global state. (See Chapter 8 for more on pure functions.)

One trivial function that can be memoized is sin(), shown in Listing 10-17.

>>> import math
>>> _SIN_MEMOIZED_VALUES = {}
>>> def memoized_sin(x):
...    if x not in _SIN_MEMOIZED_VALUES:
...        _SIN_MEMOIZED_VALUES[x] = math.sin(x)
...    return _SIN_MEMOIZED_VALUES[x]
>>> memoized_sin(1)
0.8414709848078965
>>> _SIN_MEMOIZED_VALUES
{1: 0.8414709848078965}
>>> memoized_sin(2)
0.9092974268256817
>>> memoized_sin(2)
0.9092974268256817
>>> _SIN_MEMOIZED_VALUES
{1: 0.8414709848078965, 2: 0.9092974268256817}
>>> memoized_sin(1)
0.8414709848078965
>>> _SIN_MEMOIZED_VALUES
{1: 0.8414709848078965, 2: 0.9092974268256817}

Listing 10-17: A memoized sin() function

In Listing 10-17, the first time that memoized_sin() is called with an 
argument that is not stored in _SIN_MEMOIZED_VALUES, the value is computed 
and stored in this dictionary. If we call the function with the same value 
again, the result will be retrieved from the dictionary rather than recom-
puted. While sin() computes very quickly, some advanced functions involv-
ing more complicated computations may take longer, and this is where 
memoization really shines.

If you’ve already read about decorators (if not, see “Decorators and 
When to Use Them” on page 100), you might see a perfect opportunity 
to use them here, and you’d be right. PyPI lists a few implementations of 
memoization through decorators, from very simple cases to the most com-
plex and complete.

Starting with Python 3.3, the functools module provides a least recently 
used (LRU) cache decorator. This provides the same functionality as 
memoization, but with the benefit that it limits the number of entries in 



168   Chapter 10

the cache, removing the least recently used one when the cache reaches its 
maximum size. The module also provides statistics on cache hits and misses 
(whether something was in the accessed cache or not), among other data. 
In my opinion, these statistics are must-haves when implementing such a 
cache. The strength of using memoization, or any caching technique, is in 
the ability to meter its usage and usefulness.

Listing 10-18 demonstrates how to use the functools.lru_cache() method 
to implement the memoization of a function. When decorated, the function 
gets a cache_info() method that can be called to get statistics about the cache 
usage. 

>>> import functools
>>> import math
>>> @functools.lru_cache(maxsize=2)
... def memoized_sin(x):
...     return math.sin(x)
...
>>> memoized_sin(2)
0.9092974268256817
>>> memoized_sin.cache_info()
CacheInfo(hits=0, misses=1, maxsize=2, currsize=1)
>>> memoized_sin(2)
0.9092974268256817
>>> memoized_sin.cache_info()
CacheInfo(hits=1, misses=1, maxsize=2, currsize=1)
>>> memoized_sin(3)
0.1411200080598672
>>> memoized_sin.cache_info()
CacheInfo(hits=1, misses=2, maxsize=2, currsize=2)
>>> memoized_sin(4)
-0.7568024953079282
>>> memoized_sin.cache_info()
CacheInfo(hits=1, misses=3, maxsize=2, currsize=2)
>>> memoized_sin(3)
0.1411200080598672
>>> memoized_sin.cache_info()
CacheInfo(hits=2, misses=3, maxsize=2, currsize=2)
>>> memoized_sin.cache_clear()
>>> memoized_sin.cache_info()
CacheInfo(hits=0, misses=0, maxsize=2, currsize=0)

Listing 10-18: Inspecting cache statistics

Listing 10-18 demonstrates how your cache is being used and how to tell 
whether there are optimizations to be made. For example, if the number 
of misses is high when the cache is not full, then the cache may be useless 
because the arguments passed to the function are never identical. This will 
help determine what should or should not be memoized!



Performances and Optimizations   169

Faster Python with PyPy
PyPy is an efficient implementation of the Python language that complies 
with standards: you should be able to run any Python program with it. 
Indeed, the canonical implementation of Python, CPython—so called 
because it’s written in C—can be very slow. The idea behind PyPy was to 
write a Python interpreter in Python itself. In time, it evolved to be written 
in RPython, which is a restricted subset of the Python language.

RPython places constraints on the Python language such that a vari-
able’s type can be inferred at compile time. The RPython code is translated 
into C code, which is compiled to build the interpreter. RPython could of 
course be used to implement languages other than Python.

What’s interesting in PyPy, besides the technical challenge, is that it is 
now at a stage where it can act as a faster replacement for CPython. PyPy 
has a just-in-time (JIT) compiler built-in; in other words, it allows the code to 
run faster by combining the speed of compiled code with the flexibility of 
interpretation.

How fast? That depends, but for pure algorithmic code, it is much 
faster. For more general code, PyPy claims to achieve three times the 
speed of CPython most of the time. Unfortunately, PyPy also has some of 
the limitations of CPython, including the global interpreter lock (GIL), which 
allows only one thread to execute at a time.

Though it’s not strictly an optimization technique, targeting PyPy as 
one of your supported Python implementations might be a good idea. To 
make PyPy a support implementation, you need to make sure that you 
are testing your software under PyPy as you would under CPython. In 
Chapter 6, we discussed tox (see “Using virtualenv with tox” on page 92), 
which supports the building of virtual environments using PyPy, just as it 
does for any version of CPython, so putting PyPy support in place should 
be pretty straightforward.

Testing PyPy support right at the beginning of the project will ensure 
that there’s not too much work to do at a later stage if you decide that you 
want to be able to run your software with PyPy.

n o t e  For the Hy project discussed in Chapter 9, we successfully adopted this strategy from 
the beginning. Hy always has supported PyPy and all other CPython versions without 
much trouble. On the other hand, OpenStack failed to do so for its projects and, as 
a result, is now blocked by various code paths and dependencies that don’t work on 
PyPy for various reasons; they weren’t required to be fully tested in the early stages.

PyPy is compatible with Python 2.7 and Python 3.5, and its JIT com-
piler works on 32- and 64-bit, x86, and ARM architectures and under 
various operating systems (Linux, Windows, and Mac OS X). PyPy often 
lags behind CPython in features, but it regularly catches up. Unless your 
project is reliant on the latest CPython features, this lag might not be a 
problem.



170   Chapter 10

Achieving Zero Copy with the Buffer Protocol
Often programs have to deal with huge amounts of data in the form of 
large arrays of bytes. Handling such a large quantity of input in strings can 
be very ineffective once you start manipulating the data by copying, slicing, 
and modifying it.

Let’s consider a small program that reads a large file of binary data and 
copies it partially into another file. To examine the memory usage of this 
program, we will use memory_profiler, as we did earlier. The script to par-
tially copy the file is shown in Listing 10-19.

@profile
def read_random():
    with open("/dev/urandom", "rb") as source:
        content = source.read(1024 * 10000)
        content_to_write = content[1024:]
    print("Content length: %d, content to write length %d" %
          (len(content), len(content_to_write)))
    with open("/dev/null", "wb") as target:
        target.write(content_to_write)

if __name__ == '__main__':
    read_random()

Listing 10-19: Partially copying a file

Running the program in Listing 10-19 using memory_profiler produces 
the output shown in Listing 10-20.

$ python -m memory_profiler memoryview/copy.py
Content length: 10240000, content to write length 10238976
Filename: memoryview/copy.py

Mem usage    Increment   Line Contents
                         @profile
 9.883 MB     0.000 MB   def read_random():
 9.887 MB     0.004 MB       with open("/dev/urandom", "rb") as source:
19.656 MB     9.770 MB           content = source.read(1024 * 10000)u
29.422 MB     9.766 MB           content_to_write = content[1024:] 
29.422 MB     0.000 MB       print("Content length: %d, content to write length %d" %
29.434 MB     0.012 MB             (len(content), len(content_to_write)))
29.434 MB     0.000 MB       with open("/dev/null", "wb") as target:
29.434 MB     0.000 MB           target.write(content_to_write)

Listing 10-20: Memory profiling of partial file copy

According to the output, the program reads 10MB from _/dev/
urandom u. Python needs to allocate around 10MB of memory to store 
this data as a string. It then copies the entire block of data, minus the 
first KB .



Performances and Optimizations   171

What’s interesting in Listing 10-20 is that the program’s memory usage is 
increased by about 10MB when building the variable content_to_write. In fact, 
the slice operator is copying the entirety of content, minus the first KB, into 
a new string object, allocating a large chunk of the 10MB.

Performing this kind of operation on large byte arrays is going to be 
a disaster since large pieces of memory will be allocated and copied. If 
you have experience writing in C code, you know that using the memcpy() 
function has a significant cost in terms of both memory usage and general 
performance.

But as a C programmer, you’ll also know that strings are arrays of char-
acters and that nothing stops you from looking at only part of an array with-
out copying it. You can do this through the use of basic pointer arithmetic, 
assuming that the entire string is in a contiguous memory area.

This is also possible in Python using objects that implement the buffer 
protocol. The buffer protocol is defined in PEP 3118, as a C API that needs 
to be implemented on various types for them to provide this protocol. The 
string class, for example, implements this protocol.

When you implement this protocol on an object, you can then use the 
memoryview class constructor to build a new memoryview object that will refer-
ence the original object memory. For example, Listing 10-21 shows how to 
use memoryview to access slice of a string without doing any copying:

>>> s = b"abcdefgh"
>>> view = memoryview(s)
>>> view[1]

u 98 <1>
>>> limited = view[1:3]
>>> limited
<memory at 0x7fca18b8d460>
>>> bytes(view[1:3])
b'bc'

Listing 10-21: Using memoryview to avoid copying data

At u, you find the ASCII code for the letter b. In Listing 10-21, we 
are making use of the fact that the memoryview object’s slice operator itself 
returns a memoryview object. That means it does not copy any data but merely 
references a particular slice of it, saving the memory that would be used by 
a copy. Figure 10-2 illustrates what happens in Listing 10-21.

limited

a b c d e f g h

s

Figure 10-2: Using slice on memoryview objects

We can rewrite the program from Listing 10-19, this time referencing 
the data we want to write using a memoryview object rather than allocating a 
new string.



172   Chapter 10

@profile
def read_random():
    with open("/dev/urandom", "rb") as source:
        content = source.read(1024 * 10000)
        content_to_write = memoryview(content)[1024:]
    print("Content length: %d, content to write length %d" %
          (len(content), len(content_to_write)))
    with open("/dev/null", "wb") as target:
        target.write(content_to_write)

if __name__ == '__main__':
    read_random()

Listing 10-22: Partially copying a file using memoryview

The program in Listing 10-22 uses half the memory of the first version in 
Listing 10-19. We can see this by testing it with memory_profiler again, like so:

$ python -m memory_profiler memoryview/copy-memoryview.py
Content length: 10240000, content to write length 10238976
Filename: memoryview/copy-memoryview.py

Mem usage    Increment   Line Contents
                         @profile
 9.887 MB     0.000 MB   def read_random():
 9.891 MB     0.004 MB u     with open("/dev/urandom", "rb") as source:
19.660 MB     9.770 MB         content = source.read(1024 * 10000) 
19.660 MB     0.000 MB           content_to_write = memoryview(content)[1024:] 
19.660 MB     0.000 MB       print("Content length: %d, content to write length %d" %
19.672 MB     0.012 MB             (len(content), len(content_to_write)))
19.672 MB     0.000 MB       with open("/dev/null", "wb") as target:
19.672 MB     0.000 MB           target.write(content_to_write)

These results show that we are reading 10,000KB from /dev/urandom 
and not doing much with it u. Python needs to allocate 9.77MB of memory 
to store this data as a string .

We reference the entire block of data minus the first KB, because we 
won’t be writing that first KB to the target file. Because we aren’t copying, 
no more memory is used!

This kind of trick is especially useful when dealing with sockets. When 
sending data over a socket, it’s possible that the data might split between 
calls rather than be sent in a single call: the socket.send methods return the 
actual data length that was able to be sent by the network, which might be 
smaller than the data that was intended to be sent. Listing 10-23 shows how 
the situation is usually handled.

import socket
s = socket.socket(...)
s.connect(...)

u data = b"a" * (1024 * 100000) <1>



Performances and Optimizations   173

while data:
    sent = s.send(data)

     data = data[sent:] <2>

Listing 10-23: Sending data over a socket

First, we build a bytes object that contains the letter a more than 100 mil-
lion times u. Then we remove the first sent bytes .

Using a mechanism that implemented in Listing 10-23, a program will 
copy the data over and over until the socket has sent everything. 

We can alter the program in Listing 10-23 to use memoryview to achieve 
the same functionality with zero copying, and therefore higher perfor-
mance, as shown in Listing 10-24.

import socket
s = socket.socket(...)
s.connect(...)

u data = b"a" * (1024 * 100000) <1>
mv = memoryview(data)
while mv:
    sent = s.send(mv)

     mv = mv[sent:] <2>

Listing 10-24: Sending data over a socket using memoryview

First, we build a bytes object that contains the letter a more than 100 mil-
lion times u. Then, we build a new memoryview object pointing to the data that 
remains to be sent, rather than copying that data . This program won’t copy 
anything, so it won’t use any more memory than the 100MB initially needed 
for the data variable.

We’ve seen how memoryview objects can be used to write data efficiently, 
and this same method can be used to read data. Most I/O operations in 
Python know how to deal with objects implementing the buffer protocol: 
they can read from those, and also write to those. In this case, we don’t 
need memoryview objects; we can just ask an I/O function to write into our 
preallocated object, as shown in Listing 10-25.

>>> ba = bytearray(8)
>>> ba
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00')
>>> with open("/dev/urandom", "rb") as source:
...     source.readinto(ba)
...
8
>>> ba
bytearray(b'`m.z\x8d\x0fp\xa1')

Listing 10-25: Writing into a preallocated bytearray

In Listing 10-25, by using the readinto() method of the opened 
file, Python can directly read the data from the file and write it to a 



174   Chapter 10

preallocated bytearray. With such techniques, it’s easy to preallocate a 
buffer (as you would do in C to mitigate the number of calls to malloc()) 
and fill it at your convenience. Using memoryview, you can place data at any 
point in the memory area, as shown in Listing 10-26.

>>> ba = bytearray(8)
u >>> ba_at_4 = memoryview(ba)[4:] 

>>> with open("/dev/urandom", "rb") as source:
 ...     source.readinto(ba_at_4) 

...
4
>>> ba
bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2')

Listing 10-26: Writing into an arbitrary position of bytearray

We reference the bytearray from offset 4 to its end u. Then, we write 
the content of /dev/urandom from offset 4 to the end of bytearray, effectively 
reading just 4 bytes .

The buffer protocol is extremely important for achieving low memory 
overhead and great performances. As Python hides all the memory alloca-
tions, developers tend to forget what happens under the hood, at great cost 
to the speed of their programs!

Both the objects in the array module and the functions in the struct 
module can handle the buffer protocol correctly and can therefore per-
form efficiently when targeting zero copying.

Summary
As we’ve seen in this chapter, there are plenty of ways to make Python code 
faster. Choosing the right data structure and using the correct methods for 
manipulating the data can have a huge impact in terms of CPU and mem-
ory usage. That’s why it’s important to understand what happens in Python 
internally.

However, optimization should never be done prematurely, without first 
performing a proper profiling. It is too easy to waste time rewriting some 
barely used code with a faster variant while missing central pain points. 
Don’t miss the big picture.

Victor Stinner on Optimization
Victor is a longtime Python hacker, a core contributor, and the author of 
many Python modules. He authored PEP 454 in 2013, which proposed a 
new tracemalloc module to trace memory block allocation inside Python, 
and he wrote a simple AST optimizer called FAT. He also regularly contrib-
utes to the improvement of CPython performance.



Performances and Optimizations   175

What’s a good starting strategy for optimizing Python code?
The strategy is the same in Python as in other languages. First, you 
need a well-defined use case in order to get a stable and reproducible 
benchmark. Without a reliable benchmark, trying different optimiza-
tions may result in wasted time and premature optimization. Useless 
optimizations may make the code worse, less readable, or even slower. A 
useful optimization must speed the program up by at least 5 percent if 
it’s to be worth pursuing.

If a specific part of the code is identified as being “slow,” a bench-
mark should be prepared on this code. A benchmark on a short 
function is usually called a micro-benchmark. The speedup should be 
at least 20 percent, maybe 25 percent, to justify an optimization on a 
micro-benchmark.

It may be interesting to run a benchmark on different computers, 
different operating systems, or different compilers. For example, per-
formances of realloc() may vary between Linux and Windows. 

What are your recommended tools for profiling or optimizing Python code?
Python 3.3 has a time.perf_counter() function to measure elapsed time 
for a benchmark. It has the best resolution available.

A test should be run more than once; three times is a minimum, 
and five may be enough. Repeating a test fills disk cache and CPU 
caches. I prefer to keep the minimum timing; other developers prefer 
the geometric mean.

For micro-benchmarks, the timeit module is easy to use and gives 
results quickly, but the results are not reliable using default parameters. 
Tests should be repeated manually to get stable results.

Optimizing can take a lot of time, so it’s better to focus on func-
tions that use the most CPU power. To find these functions, Python 
has cProfile and profile modules to record the amount of time spent 
in each function.

Do you have any Python tricks that could improve performance?
You should reuse the Standard Library as much as possible—it’s well 
tested and also usually efficient. Built-in Python types are implemented 
in C and have good performance. Use the correct container to get the 
best performance; Python provides many different kind of containers: 
dict, list, deque, set, and so on.

There are some hacks for optimizing Python, but you should avoid 
these because they make the code less readable in exchange for a minor 
speedup.

The Zen of Python (PEP 20) says, “There should be one—and pref-
erably only one—obvious way to do it.” In practice, there are different 
ways to write Python code, and performances are not the same. Only 
trust benchmarks on your use case.



176   Chapter 10

Which areas of Python have the poorest performance and should be 
watched out for?

In general, I prefer not to worry about performance while developing 
a new application. Premature optimization is the root of all evil. When 
you identify slow functions, change the algorithm. If the algorithm and 
the container types are well chosen, you might rewrite short functions 
in C to get the best performance.

One bottleneck in CPython is the global interpreter lock, known 
as the GIL. Two threads cannot execute Python bytecode at the same 
time. However, this limitation only matters if two threads are executing 
pure Python code. If most processing time is spent in function calls, 
and these functions release the GIL, then the GIL is not the bottleneck. 
For example, most I/O functions release the GIL.

The multiprocessing module can easily be used to work around the 
GIL. Another option, more complex to implement, is to write asynchro-
nous code. Twisted, Tornado, and Tulip projects, which are network-
oriented libraries, make use of this technique.

What are some often-seen performance mistakes?
When Python is not well understood, inefficient code can be written. 
For example, I have seen copy.deepcopy() misused, when no copying was 
required.

Another performance killer is an inefficient data structure. With 
less than 100 items, the container type has no impact on performance. 
With more items, the complexity of each operation (add, get, delete) and 
its effects must be known.



11
S c a l i n g  a n d  a r c h i t e c t u r e

Sooner or later, your development pro-
cess will have to consider resiliency and 

scalability. An application’s scalability, 
concurrency, and parallelism depend largely 

on its initial architecture and design. As we’ll see 
in this chapter, there are some paradigms—such as 
multithreading—that don’t apply correctly to Python, 
whereas other techniques, such as service-oriented 
architecture, work better.

Covering scalability in its entirety would take an entire book, and has in 
fact been covered by many books. This chapter covers the essential scaling 
fundamentals, even if you’re not planning to build applications with mil-
lions of users.



178   Chapter 11

Multithreading in Python and Its Limitations
By default, Python processes run on only one thread, called the main 
thread. This thread executes code on a single processor. Multithreading is 
a programming technique that allows code to run concurrently inside a 
single Python process by running several threads simultaneously. This is 
the primary mechanism through which we can introduce concurrency 
in Python. If the computer is equipped with multiple processors, you can 
even use parallelism, running threads in parallel over several processors, to 
make code execution faster.

Multithreading is most commonly used (though not always appropri-
ately) when: 

•	 You need to run background or I/O-oriented tasks without stopping 
your main thread’s execution. For example, the main loop of a graphical 
user interface is busy waiting for an event (e.g., a user click or keyboard 
input), but the code needs to execute other tasks.

•	 You need to spread your workload across several CPUs.

The first scenario is a good general case for multithreading. Though 
implementing multithreading in this circumstance would introduce extra 
complexity, controlling multithreading would be manageable, and perfor-
mance likely wouldn’t suffer unless the CPU workload was intensive. The 
performance gain from using concurrency with workloads that are I/O 
intensive gets more interesting when the I/O has high latency: the more 
often you have to wait to read or write, the more beneficial it is to do some-
thing else in the meantime.

In the second scenario, you might want to start a new thread for each 
new request instead of handling them one at a time. This may seem like a 
good use for multithreading. However, if you spread your workload out like 
this, you will encounter the Python global interpreter lock (GIL), a lock that 
must be acquired each time CPython needs to execute bytecode. The lock 
means that only one thread can have control of the Python interpreter at 
any one time. This rule was introduced originally to prevent race condi-
tions, but it unfortunately means that if you try to scale your application by 
making it run multiple threads, you’ll always be limited by this global lock.

So, while using threads seems like the ideal solution, most applications 
running requests in multiple threads struggle to attain 150 percent CPU 
usage, or usage of the equivalent of 1.5 cores. Most computers have 4 or 
8 cores, and servers offer 24 or 48 cores, but the GIL prevents Python from 
using the full CPU. There are some initiatives underway to remove the GIL, 
but the effort is extremely complex because it requires performance and 
backward compatibility trade-offs.

Although CPython is the most commonly used implementation of 
the Python language, there are others that do not have a GIL. Jython, for 
example, can efficiently run multiple threads in parallel. Unfortunately, 



Scaling and Architecture   179

projects such as Jython by their very nature lag behind CPython and so are 
not really useful targets; innovation happens in CPython, and the other 
implementations are just following in CPython’s footsteps.

So, let’s revisit our two use cases with what we now know and figure out 
a better solution:

•	 When you need to run background tasks, you can use multithreading, 
but the easier solution is to build your application around an event 
loop. There are a lot of Python modules that provide for this, and the 
standard is now asyncio. There are also frameworks, such as Twisted, 
built around the same concept. The most advanced frameworks will 
give you access to events based on signals, timers, and file descriptor 
activity—we’ll talk about this later in the chapter in “Event-Driven 
Architecture” on page 181.

•	 When you need to spread the workload, using multiple processes is the 
most efficient method. We’ll look at this technique in the next section.

Developers should always think twice before using multithreading. As 
one example, I once used multithreading to dispatch jobs in rebuildd, a 
Debian-build daemon I wrote a few years ago. While it seemed handy to 
have a different thread to control each running build job, I very quickly 
fell into the threading-parallelism trap in Python. If I had the chance to 
begin again, I’d build something based on asynchronous event handling 
or multiprocessing and not have to worry about the GIL.

Multithreading is complex, and it’s hard to get multithreaded applica-
tions right. You need to handle thread synchronization and locking, which 
means there are a lot of opportunities to introduce bugs. Considering the 
small overall gain, it’s better to think twice before spending too much effort 
on it.

Multiprocessing vs. Multithreading
Since the GIL prevents multithreading from being a good scalability solu-
tion, look to the alternative solution offered by Python’s multiprocessing pack-
age. The package exposes the same kind of interface you’d achieve using 
the multithreading module, except that it starts new processes (via os.fork()) 
instead of new system threads.

Listing 11-1 shows a simple example in which one million random inte-
gers are summed eight times, with this activity spread across eight threads 
at the same time.

import random
import threading
results = []
def compute():
    results.append(sum(
        [random.randint(1, 100) for i in range(1000000)]))
workers = [threading.Thread(target=compute) for x in range(8)]

http://en.wikipedia.org/wiki/Software_transactional_memory


180   Chapter 11

for worker in workers:
    worker.start()
for worker in workers:
    worker.join()
print("Results: %s" % results)

Listing 11-1: Using multithreading for concurrent activity

In Listing 11-1, we create eight threads using the threading.Thread 
class and store them in the workers array. Those threads will execute the 
compute() function. They then use the start() method to start. The join() 
method only returns once the thread has terminated its execution. At this 
stage, the result can be printed.

Running this program returns the following:

$ time python worker.py
Results: [50517927, 50496846, 50494093, 50503078, 50512047, 50482863, 
50543387, 50511493]
python worker.py  13.04s user 2.11s system 129% cpu 11.662 total

This has been run on an idle four-core CPU, which means that Python 
could potentially have used up to 400 percent of CPU. However, these 
results show that it was clearly unable to do that, even with eight threads 
running in parallel. Instead, its CPU usage maxed out at 129 percent, which 
is just 32 percent of the hardware’s capabilities (129/400).

Now, let’s rewrite this implementation using multiprocessing. For a simple 
case like this, switching to multiprocessing is pretty straightforward, as 
shown in Listing 11-2.

import multiprocessing
import random

def compute(n):
    return sum(
        [random.randint(1, 100) for i in range(1000000)])

# Start 8 workers
pool = multiprocessing.Pool(processes=8)
print("Results: %s" % pool.map(compute, range(8)))

Listing 11-2: Using multiprocessing for concurrent activity

The multiprocessing module offers a Pool object that accepts as an argu-
ment the number of processes to start. Its map() method works in the same 
way as the native map() method, except that a different Python process will 
be responsible for the execution of the compute() function.

Running the program in Listing 11-2 under the same conditions as 
Listing 11-1 gives the following result:

$ time python workermp.py
Results: [50495989, 50566997, 50474532, 50531418, 50522470, 50488087, 



Scaling and Architecture   181

0498016, 50537899]
python workermp.py  16.53s user 0.12s system 363% cpu 4.581 total

Multiprocessing reduces the exectution time by 60 percent. Moreover, 
we’ve been able to consume up to 363 percent of CPU power, which is more 
than 90 percent (363/400) of the computer’s CPU capacity.

Each time you think that you can parallelize some work, it’s almost 
always better to rely on multiprocessing and to fork your jobs in order to 
spread the workload across several CPU cores. This wouldn’t be a good solu-
tion for very small execution times, as the cost of the fork() call would be 
too big, but for larger computing needs, it works well.

Event-Driven Architecture
Event-driven programming is characterized by the use of events, such as 
user input, to dictate how control flows through a program, and it is a 
good solution for organizing program flow. The event-driven program 
listens for various events happening on a queue and reacts based on 
those incoming events.

Let’s say you want to build an application that listens for a connection 
on a socket and then processes the connection it receives. There are basi-
cally three ways to approach the problem:

•	 Fork a new process each time a new connection is established, relying 
on something like the multiprocessing module.

•	 Start a new thread each time a new connection is established, relying 
on something like the threading module.

•	 Add this new connection to your event loop and react to the event it will 
generate when it occurs.

Determining how a modern computer should handle tens of thousands 
of connections simultaneously is known as the C10K problem. Among other 
things, the C10K resolution strategies explain how using an event loop to 
listen to hundreds of event sources is going to scale much better than, 
say, a one-thread-per-connection approach. This doesn’t mean that the 
two techniques are not compatible, but it does mean that you can usually 
replace the multiple-threads approach with an event-driven mechanism.

Event-driven architecture uses an event loop: the program calls a func-
tion that blocks execution until an event is received and ready to be pro-
cessed. The idea is that your program can be kept busy doing other tasks 
while waiting for inputs and outputs to complete. The most basic events are 
“data ready to be read” and “data ready to be written.”

In Unix, the standard functions for building such an event loop are 
the system calls select(2) or poll(2). These functions expect a list of file 
descriptors to listen for, and they will return as soon as at least one of the 
file descriptors is ready to be read from or written to.

In Python, we can access these system calls through the select module. 
It’s easy enough to build an event-driven system with these calls, though 



182   Chapter 11

doing so can be tedious. Listing 11-3 shows an event-driven system that does 
our specified task: listening on a socket and processing any connections it 
receives.

import select
import socket

server = socket.socket(socket.AF_INET,
                       socket.SOCK_STREAM)
# Never block on read/write operations
server.setblocking(0)

# Bind the socket to the port
server.bind(('localhost', 10000))
server.listen(8)

while True:
    # select() returns 3 arrays containing the object (sockets, files...)

    # that are ready to be read, written to or raised an error
inputs, 
outputs, excepts = select.select([server], [], [server])
    if server in inputs:
        connection, client_address = server.accept()
        connection.send("hello!\n")

Listing 11-3: Event-driven program that listens for and processes connections

In Listing 11-3, a server socket is created and set to non-blocking, mean-
ing that any read or write operation attempted on that socket won’t block 
the program. If the program tries to read from the socket when there is 
no data ready to be read, the socket recv() method will raise an OSError 
indicating that the socket is not ready. If we did not call setblocking(0), the 
socket would stay in blocking mode rather than raise an error, which is not 
what we want here. The socket is then bound to a port and listens with a 
maximum backlog of eight connections.

The main loop is built using select(), which receives the list of file 
descriptors we want to read (the socket in this case), the list of file descrip-
tors we want to write to (none in this case), and the list of file descriptors 
we want to get exceptions from (the socket in this case). The select() func-
tion returns as soon as one of the selected file descriptors is ready to read, 
is ready to write, or has raised an exception. The returned values are lists of 
file descriptors that match the requests. It’s then easy to check whether our 
socket is in the ready-to-be-read list and, if so, accept the connection and 
send a message.

Other Options and asyncio
Alternatively, there are many frameworks, such as Twisted or Tornado, that 
provide this kind of functionality in a more integrated manner; Twisted has 
been the de facto standard for years in this regard. C libraries that export 



Scaling and Architecture   183

Python interfaces, such as libevent, libev, or libuv, also provide very efficient 
event loops.

These options all solve the same problem. The downside is that, while 
there are a wide variety of choices, most of them are not interoperable. 
Many are also callback based, meaning that the program flow is not very 
clear when reading the code; you have to jump to a lot of different places 
to read through the program.

Another option would be the gevent or greenlet libraries, which avoid 
callback use. However, the implementation details include CPython x86–
specific code and dynamic modification of standard functions at runtime, 
meaning you wouldn’t want to use and maintain code using these libraries 
over the long term.

In 2012, Guido Van Rossum began work on a solution code-named tulip, 
documented under PEP 3156 (https://www.python.org/dev/peps/pep-3156). The 
goal of this package was to provide a standard event loop interface that would 
be compatible with all frameworks and libraries and be interoperable.

The tulip code has since been renamed and merged into Python 3.4 as 
the asyncio module, and it is now the de facto standard. Not all libraries are 
compatible with asyncio, and most existing bindings need to be rewritten.

As of Python 3.6, asyncio has been so well integrated that it has its own 
await and async keywords, making it straightforward to use. Listing 11-4 
shows how the aiohttp library, which provides an asynchronous HTTP bind-
ing, can be used with asyncio to run several web page retrievals concurrently.

import aiohttp
import asyncio

async def get(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return response

loop = asyncio.get_event_loop()

coroutines = [get("http://example.com") for _ in range(8)]

results = loop.run_until_complete(asyncio.gather(*coroutines))

print("Results: %s" % results)

Listing 11-4: Retrieving web pages concurrently with aiohttp

We define the get() function as asynchronous, so it is technically a 
coroutine. The get() function’s two steps, the connection and the page 
retrieval, are defined as asynchronous operations that yield control to the 
caller until they are ready. That makes it possible for asyncio to schedule 
another coroutine at any point. The module resumes the execution of a 

http://greenlet.readthedocs.org/
http://www.python.org/dev/peps/pep-3156/


184   Chapter 11

coroutine when the connection is established or the page is ready to be 
read. The eight coroutines are started and provided to the event loop at the 
same time, and it is asyncio’s job to schedule them efficiently.

The asyncio module is a great framework for writing asynchronous code 
and leveraging event loops. It supports files, sockets, and more, and a lot of 
third-party libraries are available to support various protocols. Don’t hesi-
tate to use it!

Service-Oriented Architecture
Circumventing Python’s scaling shortcomings can seem tricky. However, 
Python is very good at implementing service-oriented architecture (SOA), a style 
of software design in which different components provide a set of services 
through a communication protocol. For example, OpenStack uses SOA 
architecture in all of its components. The components use HTTP REST to 
communicate with external clients (end users) and an abstracted remote 
procedure call (RPC) mechanism that is built on top of the Advanced 
Message Queuing Protocol (AMQP).

In your development situations, knowing which communication chan-
nels to use between those blocks is mainly a matter of knowing with whom 
you will be communicating.

When exposing a service to the outside world, the preferred channel is 
HTTP, especially for stateless designs such as REST-style (REpresentational 
State Transfer–style) architectures. These kinds of architectures make it 
easier to implement, scale, deploy, and comprehend services.

However, when exposing and using your API internally, HTTP may be 
not the best protocol. There are many other communication protocols and 
fully describing even one would likely fill an entire book.

In Python, there are plenty of libraries for building RPC systems. Kombu 
is interesting because it provides an RPC mechanism on top of a lot of back-
ends, AMQ protocol being the main one. It also supports Redis, MongoDB, 
Beanstalk, Amazon SQS, CouchDB, or ZooKeeper.

In the end, you can indirectly gain a huge amount of performance from 
using such loosely coupled architecture. If we consider that each module pro-
vides and exposes an API, we can run multiple daemons that can also expose 
that API, allowing multiple processes—and therefore CPUs—to handle the 
workload. For example, Apache httpd would create a new worker using a new 
system process that handles new connections; we could then dispatch a con-
nection to a different worker running on the same node. To do so, we just 
need a system for dispatching the work to our various workers, which this API 
provides. Each block will be a different Python process, and as we’ve seen 
previously, this approach is better than multithreading for spreading out your 
workload. You’ll be able to start multiple workers on each node. Even if state-
less blocks are not strictly necessary, you should favor their use anytime you 
have the choice.



Scaling and Architecture   185

Interprocess Communication with ZeroMQ
As we’ve just discussed, a messaging bus is always needed when building 
distributed systems. Your processes need to communicate with each other in 
order to pass messages. ZeroMQ is a socket library that can act as a concurrency 
framework. Listing 11-5 implements the same worker seen in Listing 11-1 but 
uses ZeroMQ as a way to dispatch work and communicate between processes.

import multiprocessing
import random
import zmq

def compute():
    return sum(
        [random.randint(1, 100) for i in range(1000000)])

def worker():
    context = zmq.Context()
    work_receiver = context.socket(zmq.PULL)
    work_receiver.connect("tcp://0.0.0.0:5555")
    result_sender = context.socket(zmq.PUSH)
    result_sender.connect("tcp://0.0.0.0:5556")
    poller = zmq.Poller()
    poller.register(work_receiver, zmq.POLLIN)

    while True:
        socks = dict(poller.poll())
        if socks.get(work_receiver) == zmq.POLLIN:
            obj = work_receiver.recv_pyobj()
            result_sender.send_pyobj(obj())

context = zmq.Context()
# Build a channel to send work to be done

 work_sender = context.socket(zmq.PUSH)
work_sender.bind("tcp://0.0.0.0:5555")
# Build a channel to receive computed results

 result_receiver = context.socket(zmq.PULL)
result_receiver.bind("tcp://0.0.0.0:5556")
# Start 8 workers
processes = []
for x in range(8):

     p = multiprocessing.Process(target=worker)
    p.start()
    processes.append(p)
# Send 8 jobs
for x in range(8):
    work_sender.send_pyobj(compute)
# Read 8 results

results = []
for x in range(8):

     results.append(result_receiver.recv_pyobj()) 



186   Chapter 11

# Terminate all processes
for p in processes:
    p.terminate()
print("Results: %s" % results)

Listing 11-5: workers using ZeroMQ

We create two sockets, one to send the function (work_sender)  
and one to receive the job (result_receiver) . Each worker started by 
multiprocessing.Process  creates its own set of sockets and connects 
them to the master process. The worker then executes whatever function 
is sent to it and sends back the result. The master process just has to send 
eight jobs over its sender socket and wait for eight results to be sent back 
via the receiver socket .

As you can see, ZeroMQ provides an easy way to build communication 
channels. I’ve chosen to use the TCP transport layer here to illustrate the 
fact that we could run this over a network. It should be noted that ZeroMQ 
also provides an interprocess communication channel that works locally 
(without any network layer involved) by using Unix sockets. Obviously, the 
communication protocol built upon ZeroMQ in this example is very simple 
for the sake of being clear and concise, but it shouldn’t be hard to imagine 
building a more sophisticated communication layer on top of it. It’s also 
easy to imagine building an entirely distributed application communica-
tion with a network message bus such as ZeroMQ or AMQP.

Note that protocols such as HTTP, ZeroMQ, and AMQP are language 
agnostic: you can use different languages and platforms to implement each 
part of your system. While we all agree that Python is a good language, 
other teams might have other preferences, or another language might be a 
better solution for some part of a problem.

In the end, using a transport bus to decouple your application into sev-
eral parts is a good option. This approach allows you to build both synchro-
nous and asynchronous APIs that can be distributed from one computer to 
several thousand. It doesn’t tie you to a particular technology or language, 
so you can evolve everything in the right direction.

Summary
The rule of thumb in Python is to use threads only for I/O-intensive work-
loads and to switch to multiple processes as soon as a CPU-intensive work-
load is on the table. Distributing workloads on a wider scale—such as when 
building a distributed system over a network—requires external libraries 
and protocols. These are supported by Python, though provided externally.



12
M a n a g i n g  R e l a t i o n a l 

D a t a b a s e s

Applications will almost always have to 
store data of some kind, and developers 

will often combine a relational database 
management system (RDBMS) with some 

type of object relational mapping tool (ORM). 
RDBMSs and ORMs can be tricky and are not a favor-
ite topic for many developers, but sooner or later, they 
must be addressed.

RDBMSs, ORMs, and When to Use Them
An RDBMS is the database that stores an application’s relational data. 
Developers will use a language like SQL (Structured Query Language) 
to deal with the relational algebra, meaning that a language like this 
handles the data management and the relationships between the data. 
Used together, they allow you to both store data and query that data to get 



188   Chapter 12

specific information as efficiently as possible. Having a good understanding 
of relational database structures, such as how to use proper normalization 
or the different types of serializability, might keep you from falling into 
many traps. Obviously, such subjects deserve an entire book and won’t be 
covered in their entirety in this chapter; instead, we’ll focus on using the 
database via its usual programming language, SQL.

Developers may not want to invest in learning a whole new program-
ming language to interact with the RDBMS. If so, they tend to avoid writing 
SQL queries entirely, relying instead on a library to do the work for them. 
ORM libraries are commonly found in programming language ecosystems, 
and Python is no exception. 

The purpose of an ORM is to make database systems easier to access 
by abstracting the process of creating queries: it generates the SQL so you 
don’t have to. Unfortunately, this abstraction layer can prevent you from 
performing more specific or low-level tasks that the ORM is simply not 
capable of doing, such as writing complex queries. 

There is also a particular set of difficulties with using ORMs in object-
oriented programs that are so common, they are known collectively as 
the object-relational impedance mismatch. This impedance mismatch occurs 
because relational databases and object-oriented programs have different 
representations of data that don’t map properly to one another: mapping 
SQL tables to Python classes won’t give you optimal results, no matter what 
you do.

Understanding SQL and RDBMSs will allow you to write your own 
queries, without having to rely on the abstraction layer for everything.

But that’s not to say you should avoid ORMs entirely. ORM libraries can 
help with rapid prototyping of your application model, and some libraries 
even provide useful tools such as schema upgrades and downgrades. It’s 
important to understand that using an ORM is not a substitute for gaining 
a real understanding of RDBMSs: many developers try to solve problems 
in the language of their choice rather than using their model API, and the 
solutions they come up with are inelegant at best.

n o t e  This chapter assumes you know basic SQL. Introducing SQL queries and discussing 
how tables work is beyond the scope of this book. If you’re new to SQL, I recommend 
learning the basics before continuing. Practical SQL by Anthony DeBarros (No 
Starch Press, 2018) is a good place to start.

Let’s look at an example that demonstrates why understanding RDBMSs 
can help you write better code. Say you have a SQL table for keeping track of 
messages. This table has a single column named id representing the ID of the 
message sender, which is the primary key, and a string containing the content 
of the message, like so:

CREATE TABLE message (
  id serial PRIMARY KEY,
  content text
);



Managing Relational Databases   189

We want to detect any duplicate messages received and exclude them 
from the database. To do this, a typical developer might write SQL using an 
ORM, as shown in Listing 12-1.

if query.select(Message).filter(Message.id == some_id):
    # We already have the message, it's a duplicate, ignore and raise
    raise DuplicateMessage(message)
else:
    # Insert the message
    query.insert(message)

Listing 12-1: Detecting and excluding duplicate messages with an ORM

This code works for most cases, but it has some major drawbacks:

•	 The duplicate constraint is already expressed in the SQL schema, so 
there is a sort of code duplication: using PRIMARY KEY implicitly defines 
the uniqueness of the id field.

•	 If the message is not yet in the database, this code executes two SQL 
queries: a SELECT statement and then an INSERT statement. Executing a 
SQL query might take a long time and require a round-trip to the SQL 
server, introducing extraneous delay.

•	 The code doesn’t account for the possibility that someone else might 
insert a duplicate message after we call select_by_id() but before we call 
insert(), which would cause the program to raise an exception. This 
vulnerability is called a race condition.

There’s a much better way to write this code, but it requires coopera-
tion with the RDBMS server. Rather than checking for the message’s exis-
tence and then inserting it, we can insert it right away and use a try...except 
block to catch a duplicate conflict:

try:
    # Insert the message
    message_table.insert(message)
except UniqueViolationError:
    # Duplicate
    raise DuplicateMessage(message)

In this case, inserting the message directly into the table works flaw-
lessly if the message is not already present. If it is, the ORM raises an 
exception indicating the violation of the uniqueness constraint. This 
method achieves the same effect as Listing 12-1 but in a more efficient 
fashion and without any race condition. This is a very simple pattern, and 
it doesn’t conflict with any ORM in any way. The problem is that develop-
ers tend to treat SQL databases as dumb storage rather than as a tool they 
can use to get proper data integrity and consistency; consequently, they 
may duplicate the constraints written in SQL in their controller code rather 
than in their model.



190   Chapter 12

Treating your SQL backend as a model API is good way to make effi-
cient use of it. You can manipulate the data stored in your RDBMS with 
simple function calls programmed in its own procedural language.

Database Backends
ORM supports multiple database backends. No ORM library provides a 
complete abstraction of all RDBMS features, and simplifying the code to 
the most basic RDBMS available will make using any advanced RDBMS 
functions impossible without breaking the abstraction layer. Even simple 
things that aren’t standardized in SQL, such as handling timestamp opera-
tions, are a pain to deal with when using an ORM. This is even more true if 
your code is RDBMS agnostic. It is important to keep this in mind when you 
choose your application’s RDBMS.

Isolating ORM libraries (as described in “External Libraries” on 
page 22) helps mitigate potential problems. This approach allows you 
to easily swap your ORM library for a different one should the need arise 
and to optimize your SQL usage by identifying places with inefficient 
query usage, which lets you bypass most of the ORM boilerplate.

For example, you can use your ORM in a module of your application, 
such as myapp.storage, to easily build in such isolation. This module should 
export only functions and methods that allow you to manipulate the data 
at a high level of abstraction. The ORM should be used only from that 
module. At any point, you will be able to drop in any module providing the 
same API to replace myapp.storage.

The most commonly used ORM library in Python (and arguably the 
de facto standard) is sqlalchemy. This library supports a huge number of 
backends and provides abstraction for most common operations. Schema 
upgrades can be handled by third-party packages such as alembic (https://
pypi.python.org/pypi/alembic/).

Some frameworks, such as Django (https://www.djangoproject.com), pro-
vide their own ORM libraries. If you choose to use a framework, it’s smart 
to use the built-in library because it will often integrate better with the 
framework than an external one.

W a R n i n g  The Module View Controller (MVC) architecture that most frameworks rely on can be 
easily misused. These frameworks implement (or make it easy to implement) ORM in 
their models directly, but without abstracting enough of it: any code you have in your 
view and controllers that use the model will also be using ORM directly. You need 
to avoid this. You should write a data model that includes the ORM library rather 
than consists of it. Doing so provides better testability and isolation, and makes 
swapping out the ORM with another storage technology much easier.

Streaming Data with Flask and PostgreSQL
Here, I’ll show you how you can use one of PostgreSQL’s advanced features to 
build an HTTP event-streaming system to help master your data storage.

http://www.sqlalchemy.org/


Managing Relational Databases   191

Writing the Data-Streaming Application
The purpose of the micro-application in Listing 12-2 is to store messages in 
a SQL table and provide access to those messages via an HTTP REST API. 
Each message consists of a channel number, a source string, and a content 
string. 

CREATE TABLE message (
  id SERIAL PRIMARY KEY,
  channel INTEGER NOT NULL,
  source TEXT NOT NULL,
  content TEXT NOT NULL
);

Listing 12-2: SQL table schema for storing messages

We also want to stream these messages to the client so that it can pro-
cess them in real time. To do this, we’re going to use the LISTEN and NOTIFY 
features of PostgreSQL. These features allow us to listen for messages sent 
by a function we provide that PostgreSQL will execute:

 CREATE OR REPLACE FUNCTION notify_on_insert() RETURNS trigger AS $$
 BEGIN

  PERFORM pg_notify('channel_' || NEW.channel,
                    CAST(row_to_json(NEW) AS TEXT));
  RETURN NULL;
END;
$$ LANGUAGE plpgsql;

This code creates a trigger function written in pl/pgsql, a language that 
only PostgreSQL understands. Note that we could also write this function 
in other languages, such as Python itself, as PostgreSQL embeds the Python 
interpreter in order to provide a pl/python language. The single simple 
operation we’ll be performing here does not necessitate leveraging Python, 
so sticking to pl/pgsql is a wise choice.

The function notify_on_insert()  performs a call to pg_notify() , 
which is the function that actually sends the notification. The first argu-
ment is a string that represents a channel, while the second is a string car-
rying the actual payload. We define the channel dynamically based on the 
value of the channel column in the row. In this case, the payload will be the 
entire row in JSON format. Yes, PostgreSQL knows how to convert a row to 
JSON natively!

Next, we want to send a notification message on each INSERT performed 
in the message table, so we need to trigger this function on such events:

CREATE TRIGGER notify_on_message_insert AFTER INSERT ON message
FOR EACH ROW EXECUTE PROCEDURE notify_on_insert();

The function is now plugged in and will be executed upon each success-
ful INSERT performed in the message table.

http://www.postgresql.org/docs/9.2/static/sql-listen.html
http://www.postgresql.org/docs/9.2/static/sql-notify.html


192   Chapter 12

We can check that it works by using the LISTEN operation in psql:

$ psql
psql (9.3rc1)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

mydatabase=> LISTEN channel_1;
LISTEN 
mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');
INSERT 0 1
Asynchronous notification "channel_1" with payload
"{"id":1,"channel":1,"source":"jd","content":"hello world"}"
received from server process with PID 26393.

As soon as the row is inserted, the notification is sent, and we’re able to 
receive it through the PostgreSQL client. Now all we have to do is build the 
Python application that streams this event, shown in Listing 12-3.

import psycopg2
import psycopg2.extensions
import select

conn = psycopg2.connect(database='mydatabase', user='myuser',
                        password='idkfa', host='localhost')

conn.set_isolation_level(
    psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

curs = conn.cursor()
curs.execute("LISTEN channel_1;")

while True:
    select.select([conn], [], [])
    conn.poll()
    while conn.notifies:
        notify = conn.notifies.pop()
        print("Got NOTIFY:", notify.pid, notify.channel, 
notify.payload)

Listing 12-3: Listening and receiving the stream of notifications

Listing 12-3 connects to PostgreSQL using the psycopg2 library. The 
psycopg2 library is a Python module that implements the PostgreSQL net-
work protocol and allows us to connect to a PostgreSQL server to send SQL 
requests and receive results. We could have used a library that provides an 
abstraction layer, such as sqlalchemy, but abstracted libraries don’t provide 
access to the LISTEN and NOTIFY functionality of PostgreSQL. It’s important to 
note that it is still possible to access the underlying database connection to 
execute the code when using a library like sqlalchemy, but there would be no 
point in doing that for this example, since we don’t need any of the other 
features the ORM library provides.



Managing Relational Databases   193

The program listens on channel_1, and as soon as it receives a notifica-
tion, prints it to the screen. If we run the program and insert a row in the 
message table, we get the following output:

$ python listen.py
Got NOTIFY: 28797 channel_1
{"id":10,"channel":1,"source":"jd","content":"hello world"}

As soon as we insert the row, PostgreSQL runs the trigger and sends a 
notification. Our program receives it and prints the notification payload; 
here, that’s the row serialized to JSON. We now have the basic ability to 
receive data as it is inserted into the database, without doing any extra 
requests or work.

Building the Application
Next, we’ll use Flask, a simple HTTP micro-framework, to build our applica-
tion. We’re going to build an HTTP server that streams the flux of insert 
using the Server-Sent Events message protocol defined by HTML5. An alter-
native would be to use Transfer-Encoding: chunked defined by HTTP/1.1:

import flask
import psycopg2
import psycopg2.extensions
import select

app = flask.Flask(__name__)

def stream_messages(channel):
    conn = psycopg2.connect(database='mydatabase', user='mydatabase',
                            password='mydatabase', host='localhost')
    conn.set_isolation_level(
        psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

    curs = conn.cursor()
    curs.execute("LISTEN channel_%d;" % int(channel))

    while True:
        select.select([conn], [], [])
        conn.poll()
        while conn.notifies:
            notify = conn.notifies.pop()
            yield "data: " + notify.payload + "\n\n"

@app.route("/message/<channel>", methods=['GET'])
def get_messages(channel):
    return flask.Response(stream_messages(channel),
                          mimetype='text/event-stream')

if __name__ == "__main__":
    app.run()

http://flask.pocoo.org/
http://www.w3.org/TR/2009/WD-eventsource-20090423/


194   Chapter 12

This application is simple enough that it supports streaming but not 
any other data retrieval operation. We use Flask to route the HTTP request 
GET /message/channel to our streaming code. As soon as the code is called, 
the application returns a response with the mimetype text/event-stream and 
sends back a generator function instead of a string. Flask will call this func-
tion and send results each time the generator yields something.

The generator, stream_messages(), reuses the code we wrote earlier to 
listen to PostgreSQL notifications. It receives the channel identifier as an 
argument, listens to that channel, and then yields the payload. Remember 
that we used PostgreSQL’s JSON encoding function in the trigger function, 
so we’re already receiving JSON data from PostgreSQL. There’s no need 
for us to transcode the data since it’s fine to send JSON data to the HTTP 
client. 

n o t e  For the sake of simplicity, this example application has been written in a single file. If 
this were a real application, I would move the storage-handling implementation into 
its own Python module.

We can now run the server:

$ python listen+http.py
 * Running on http://127.0.0.1:5000/

On another terminal, we can connect and retrieve the events as they’re 
entered. Upon connection, no data is received, and the connection is kept 
open:

$ curl -v http://127.0.0.1:5000/message/1
* About to connect() to 127.0.0.1 port 5000 (#0)
*   Trying 127.0.0.1...
* Adding handle: conn: 0x1d46e90
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn 0 (0x1d46e90) send_pipe: 1, recv_pipe: 0
* Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)
> GET /message/1 HTTP/1.1
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:5000
> Accept: */*
>

But as soon as we insert some rows in the message table, we’ll start seeing 
data coming in through the terminal running curl. In a third terminal, we 
insert a message in the database:

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');
INSERT 0 1
mydatabase=> INSERT INTO message(channel, source, content)



Managing Relational Databases   195

mydatabase-> VALUES(1, 'jd', 'it works');
INSERT 0 1

Here’s the data output: 

data: {"id":71,"channel":1,"source":"jd","content":"hello world"}
data: {"id":72,"channel":1,"source":"jd","content":"it works"}

This data is printed to the terminal running curl. This keeps curl con-
nected to the HTTP server while it waits for the next flux of messages. We 
created a streaming service without doing any kind of polling here, build-
ing an entirely push-based system where information flows from one point to 
another seamlessly.

A naive and arguably more portable implementation of this application 
would instead repeatedly loop over a SELECT statement to poll for new data 
inserted in the table. This would work with any other storage system that 
does not support a publish-subscribe pattern as this one does. 

Dimitri Fontaine on Databases
Dimitri is a skilled PostgreSQL Major Contributor who works at Citus Data 
and argues with other database gurus on the pgsql-hackers mailing list. We’ve 
shared a lot of open source adventures, and he’s been kind enough to answer 
some questions about what you should do when dealing with databases.

What advice would you give to developers using RDBMSs as their storage 
backends? 

RDBMSs were invented in the ’70s to solve some common problems 
plaguing every application developer at that time, and the main ser-
vices implemented by RDBMSs were not simply data storage.

The main services offered by an RDBMS are actually the following:

•	 Concurrency: Access your data for read or write with as many concur-
rent threads of execution as you want—the RDBMS is there to handle 
that correctly for you. That’s the main feature you want out of an RDBMS.

•	 Concurrency semantics: The details about the concurrency behavior 
when using an RDBMS are proposed with a high-level specification 
in terms of atomicity and isolation, which are maybe the most crucial 
parts of ACID (atomicity, consistency, isolation, durability). Atomicity 
is the property that between the time you BEGIN a transaction and the 
time you’re done with it (either COMMIT or ROLLBACK), no other concurrent 
activity on the system is allowed to know what you’re doing—whatever 
that is. When using a proper RDBMS, also include the Data Definition 
Language (DDL), for example, CREATE TABLE or ALTER TABLE. Isolation is 
all about what you’re allowed to notice of the concurrent activity of the 
system from within your own transaction. The SQL standard defines 
four levels of isolation, as described in the PostgreSQL documentation 
(http://www.postgresql.org/docs/9.2/static/transaction-iso.html).

http://2ndquadrant.com/
http://2ndquadrant.com/


196   Chapter 12

The RDBMS takes full responsibility for your data. So it allows the 
developer to describe their own rules for consistency, and then it will 
check that those rules are valid at crucial times such as at transaction 
commit or at statement boundaries, depending on the deferability of 
your constraints declarations.

The first constraint you can place on your data is its expected input 
and output formatting, using the proper data type. An RDBMS will 
know how to work with much more than text, numbers, and dates and 
will properly handle dates that actually appear in a calendar in use today. 

Data types are not just about input and output formats, though. 
They also implement behaviors and some level of polymorphism, as we 
all expect the basic equality tests to be data type specific: we don’t com-
pare text and numbers, dates and IP addresses, arrays and ranges, and 
so on in the same way.

Protecting your data also means that the only choice for an RDBMS 
is to actively refuse data that doesn’t match your consistency rules, the 
first of which is the data type you’ve chosen. If you think it’s okay to 
have to deal with a date such as 0000-00-00 that never existed in the 
calendar, then you need to rethink.

The other part of the consistency guarantees is expressed in terms 
of constraints as in CHECK constraints, NOT NULL constraints, and con-
straint triggers, one of which is known as foreign key. All of that can 
be thought of as a user-level extension of the data type definition and 
behavior, the main difference being that you can choose to DEFER the 
enforcement of checking those constraints from the end of each state-
ment to the end of the current transaction.

The relational bits of an RDBMS are all about modeling your data 
and the guarantee that all tuples found in a relation share a common 
set of rules: structure and constraints. When enforcing that, we are 
enforcing the use of a proper explicit schema to handle our data.

Working on a proper schema for your data is known as normaliza-
tion, and you can aim for a number of subtly different normal forms in 
your design. Sometimes though, you need more flexibility than what is 
given by the result of your normalization process. Common wisdom is to 
first normalize your data schema and only then modify it to regain some 
flexibility. Chances are you actually don’t need more flexibility.

When you do need more flexibility, you can use PostgreSQL to try 
out a number of denormalization options: composite types, records, 
arrays, H-Store, JSON, or XML to name a few.

There’s a very important drawback to denormalization though, 
which is that the query language we’re going to talk about next is 
designed to handle rather normalized data. With PostgreSQL, of 
course, the query language has been extended to support as much 
denormalization as possible when using composite types, arrays or 
H-Store, and even JSON in recent releases.

The RDBMS knows a lot about your data and can help you imple-
ment a very fine-grain security model, should you need to do so. The 
access patterns are managed at the relation and column level, and 



Managing Relational Databases   197

PostgreSQL also implements SECURITY DEFINER stored procedures, allow-
ing you to offer access to sensible data in a very controlled way, much 
the same as with using saved user ID (SUID) programs.

The RDBMS offers to access your data using a SQL, which became 
the de facto standard in the ’80s and is now driven by a committee. 
In the case of PostgreSQL, lots of extensions are being added, with each 
and every major release allowing you to access a very rich DSL language. 
All the work of query planning and optimization is done for you by the 
RDBMS so that you can focus on a declarative query where you describe 
only the result you want from the data you have.

And that’s also why you need to pay close attention to the NoSQL 
offerings here, as most of those trendy products are in fact not remov-
ing just the SQL from the offering but a whole lot of other foundations 
that you’ve been trained to expect.

What advice would you give to developers using RDBMSs as their storage 
backends? 

My advice is to remember the differences between a storage backend 
and an RDBMS. Those are very different services, and if all you need 
is a storage backend, maybe consider using something other than an 
RDBMS.

Most often, though, what you really need is a full-blown RDBMS. In 
that case, the best option you have is PostgreSQL. Go read its documen-
tation (https://www.postgresql.org/docs/); see the list of data types, opera-
tors, functions, features, and extensions it provides. Read some usage 
examples on blog posts.

Then consider PostgreSQL a tool you can leverage in your devel-
opment and include it in your application architecture. Parts of the 
services you need to implement are best offered at the RDBMS layer, 
and PostgreSQL excels at being that trustworthy part of your whole 
implementation.

What’s the best way to use or not use an ORM?
The ORM will best work for CRUD applications: create, read, update, 
and delete. The read part should be limited to a very simple SELECT state-
ment targeting a single table, as retrieving more columns than neces-
sary has a significant impact on query performances and resources used. 

Any column you retrieve from the RDBMS and that you end up not 
using is pure waste of precious resources, a first scalability killer. Even 
when your ORM is able to fetch only the data you’re asking for, you still 
then have to somehow manage the exact list of columns you want in 
each situation, without using a simple abstract method that will auto-
matically compute the fields list for you.

The create, update, and delete queries are simple INSERT, UPDATE, and 
DELETE statements. Many RDBMSs offer optimizations that are not lever-
aged by ORMs, such as returning data after an INSERT.



198   Chapter 12

Furthermore, in the general case, a relation is either a table or the 
result of any query. It’s common practice when using an ORM to build 
relational mapping between defined tables and some model classes, or 
some other helper stubs.

If you consider the whole SQL semantics in their generalities, then 
the relational mapper should really be able to map any query against 
a class. You would then presumably have to build a new class for each 
query you want to run.

The idea when applied to our case is that you trust your ORM to do 
a better job than you at writing efficient SQL queries, even when you’re 
not giving it enough information to work out the exact set of data you 
are interested in.

It’s true that, at times, SQL can get quite complex, though you’re 
not going to get anywhere near simplicity by using an API-to-SQL gen-
erator that you can’t control.

However, there are two cases where you can relax and use your ORM, 
provided that you’re willing to accept the following compromise: at a 
later point, you may need to edit your ORM usage out of your codebase.

•	 Time to market: When you’re really in a hurry and want to gain market 
share as soon as possible, the only way to get there is to release a first 
version of your application and idea. If your team is more proficient at 
using an ORM than handcrafting SQL queries, then by all means just do 
that. You have to realize, though, that as soon as you’re successful with 
your application, one of the first scalability problems you will have to 
solve is going to be related to your ORM producing really bad queries. 
Also, your usage of the ORM will have painted you into a corner and 
resulted in bad code design decisions. But if you’re there, you’re success-
ful enough to spend some refactoring money and remove any depen-
dency on the ORM, right?

•	 CRUD application: This is the real thing, where you are only editing a 
single tuple at a time and you don’t really care about performance, like 
for the basic admin application interface.

What are the pros of using PostgreSQL over other databases when 
working with Python?

Here are my top reasons for choosing PostgreSQL as a developer:

•	 Community support: The PostgreSQL community is vast and welcom-
ing to new users, and folks will typically take the time to provide the 
best possible answer. The mailing lists are still the best way to commu-
nicate with the community. 

•	 Data integrity and durability: Any data you send to PostgreSQL is safe 
in its definition and your ability to fetch it again later.

http://www.postgresql.org/list/
http://www.postgresql.org/list/
http://www.postgresql.org/list/


Managing Relational Databases   199

•	 Data types, functions, operators, arrays, and ranges: PostgreSQL has 
a very rich set of data types that come with a host of operators and func-
tions. It’s even possible to denormalize using arrays or JSON data types 
and still be able to write advanced queries, including joins, against those.

•	 The planner and optimizer: It’s worth taking the time to understand 
how complex and powerful these are. 

•	 Transactional DDL: It’s possible to ROLLBACK almost any command. Try 
it now: just open your psql shell against a database you have and type in 
BEGIN; DROP TABLE foo; ROLLBACK;, where you replace foo with the name of 
a table that exists in your local instance. Amazing, right?

•	 PL/Python (and others such as C, SQL, Javascript, or Lua): You can 
run your own Python code on the server, right where the data is, so you 
don’t have to fetch it over the network just to process it and then send it 
back in a query to do the next level of JOIN.

•	 Specific indexing (GiST, GIN, SP-GiST, partial and functional): 
You can create Python functions to process your data from within 
PostgreSQL and then index the result of calling that function. When 
you issue a query with a WHERE clause calling that function, it’s called 
only once with the data from the query; then it’s matched directly with 
the contents of the index. 

http://pgxn.org/
http://pgxn.org/




13
W r i t e  L e s s ,  C o d e  M o r e

In this final chapter, I’ve compiled a few 
of Python’s more advanced features that I 

use to write better code. These are not lim-
ited to the Python Standard Library. We’ll 

cover how to make your code compatible with both 
Python 2 and 3, how to create a Lisp-like method dis-
patcher, how to use context managers, and how to 
create a boilerplate for classes with the attr module. 

Using six for Python 2 and 3 Support
As you likely know, Python 3 breaks compatibility with Python 2 and 
shifts things around. However, the basics of the language haven’t changed 
between versions, which makes it possible to implement forward and back-
ward compatibility, creating a bridge between Python 2 and Python 3.

Lucky for us, this module already exists! It’s called six—because 2 × 3 = 6.

http://pythonhosted.org/six/


202   Chapter 13

The six module provides the useful six.PY3 variable, which is a Boolean 
that indicates whether you are running Python 3 or not. This is the pivot 
variable for any of your codebase that has two versions: one for Python 2 
and one for Python 3. However, be careful not to abuse it; scattering your 
codebase with if six.PY3 is going to make it difficult for people to read and 
understand.

When we discussed generators in “Generators” on page 121, we saw that 
Python 3 has a great property whereby iterable objects are returned instead 
of lists in various built-in functions, such as map() or filter(). Python 3 there-
fore got rid of methods like dict.iteritems(), which was the iterable version 
of dict.items() in Python 2, in favor of making dict.items() return an iterator 
rather than a list. This change in methods and their return types can break 
your Python 2 code. 

The six module provides six.iteritems() for such cases, which can be 
used to replace Python 2–specific code like this:

for k, v in mydict.iteritems():
    print(k, v)

Using six, you would replace the mydict.iteritems() code with Python 2- 
and 3-compliant code like so:

import six

for k, v in six.iteritems(mydict):
    print(k, v)

And voilà, both Python 2 and Python 3 compliance achieved in a snap! 
The six.iteritems() function will use either dict.iteritems() or dict.items() 
to return a generator, depending on the version of Python you’re using. 
The six module provides a lot of similar helper functions that can make it 
easy to support multiple Python versions.

Another example would be the six solution to the raise keyword, whose 
syntax is different between Python 2 and Python 3. In Python 2, raise will 
accept multiple arguments, but in Python 3, raise accepts an exception as 
its only argument and nothing else. Writing a raise statement with two or 
three arguments in Python 3 would result in a SyntaxError.

The six module provides a workaround here in the form of the func-
tion six.reraise(), which allows you to reraise an exception in whichever 
version of Python you use.

Strings and Unicode
Python 3’s enhanced ability to handle advanced encodings solved the 
string and unicode issues of Python 2. In Python 2, the basic string type 
is str, which can only handle basic ASCII strings. The type unicode, added 
later in Python 2.5, handles real strings of text.



Write Less, Code More   203

In Python 3, the basic string type is still str, but it shares the properties 
of the Python 2 unicode class and can handle advanced encodings. The bytes 
type replaces the str type for handling basic character streams.

The six module again provides functions and constants, such as six.u 
and six.string_types, to handle the transition. The same compatibility is 
provided for integers, with six.integer_types that will handle the long type 
that has been removed from Python 3.

Handling Python Modules Moves
In the Python Standard Library, some modules have moved or have been 
renamed between Python 2 and 3. The six module provides a module 
called six.moves that handles a lot of these moves transparently.

For example, the ConfigParser module from Python 2 has been renamed 
to configparser in Python 3. Listing 13-1 shows how code can be ported and 
made compatible with both major Python versions using six.moves:

from six.moves.configparser import ConfigParser

conf = ConfigParser()

Listing 13-1: Using six.moves to use ConfigParser() with Python 2 and Python 3

You can also add your own moves via six.add_move to handle code transi-
tions that six doesn’t handle natively.

In the event that the six library doesn’t cover all your use cases, it may 
be worth building a compatibility module encapsulating six itself, thereby 
ensuring that you will be able to enhance the module to fit future versions 
of Python or dispose of (part of) it when you want to stop supporting a par-
ticular version of the language. Also note that six is open source and that 
you can contribute to it rather than maintain your own hacks!

The modernize Module
Lastly, there is a tool named modernize that uses the six module to “mod-
ernize” your code by porting it to Python 3, rather than simply convert-
ing Python 2 syntax to Python 3 syntax. This provides support for both 
Python 2 and Python 3. The modernize tool helps to get your port off to a 
strong start by doing most of the grunt work for you, making this tool a 
better choice than the standard 2to3 tool.

Using Python Like Lisp to Make a Single Dispatcher
I like to say that Python is a good subset of the Lisp programming language, 
and as time passes, I find that this is more and more true. The PEP 443 
proves that point: it describes a way to dispatch generic functions in a simi-
lar manner to what the Common Lisp Object System (CLOS) provides.

http://python.org/dev/peps/pep-0443/


204   Chapter 13

If you’re familiar with Lisp, this won’t be news to you. The Lisp object 
system, which is one of the basic components of Common Lisp, provides a 
simple, efficient way to define and handle method dispatching. I’ll show you 
how generic methods work in Lisp first.

Creating Generic Methods in Lisp
To begin with, let’s define a few very simple classes, without any parent 
classes or attributes, in Lisp:

(defclass snare-drum ()
  ())

(defclass cymbal ()
  ())

(defclass stick ()
  ())

(defclass brushes ()
  ())

This defines the classes snare-drum, cymbal, stick, and brushes without any 
parent class or attributes. These classes compose a drum kit, and we can 
combine them to play sound. For this, we define a play() method that takes 
two arguments and returns a sound as a string:

(defgeneric play (instrument accessory)  
  (:documentation "Play sound with instrument and accessory."))

This only defines a generic method that isn’t attached to any class and 
so cannot yet be called. At this stage, we’ve only informed the object system 
that the method is generic and might be called with two arguments named 
instrument and accessory. In Listing 13-2, we’ll implement versions of this 
method that simulate playing our snare drum.

(defmethod play ((instrument snare-drum) (accessory stick))
  "POC!")

(defmethod play ((instrument snare-drum) (accessory brushes))
  "SHHHH!")

(defmethod play ((instrument cymbal) (accessory brushes))
  "FRCCCHHT!")

Listing 13-2: Defining generic methods in Lisp, independent of classes

Now we’ve defined concrete methods in code. Each method takes two 
arguments: instrument, which is an instance of snare-drum or cymbal, and 
accessory, which is an instance of stick or brushes.



Write Less, Code More   205

At this stage, you should see the first major difference between this sys-
tem and the Python (or similar) object systems: the method isn’t tied to any 
particular class. The methods are generic, and they can be implemented for 
any class.

Let’s try it. We can call our play() method with some objects:

* (play (make-instance 'snare-drum) (make-instance 'stick))
"POC!"

* (play (make-instance 'snare-drum) (make-instance 'brushes))
"SHHHH!"

As you can see, which function is called depends on the class of the 
arguments—the object system dispatches the function calls to the right func-
tion for us, based on the type of the arguments we pass. If we call play() 
with an object whose classes do not have a method defined, an error will be 
thrown.

In Listing 13-3, the play() method is called with a cymbal and a stick 
instance; however, the play() method has never been defined for those 
arguments, so it raises an error.

* (play (make-instance 'cymbal) (make-instance 'stick))
debugger invoked on a SIMPLE-ERROR in thread
#<THREAD "main thread" RUNNING {1002ADAF23}>:
  There is no applicable method for the generic function
    #<STANDARD-GENERIC-FUNCTION PLAY (2)>
  when called with arguments
    (#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>).

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly abbreviated name):
  0: [RETRY] Retry calling the generic function.
  1: [ABORT] Exit debugger, returning to top level.

((:METHOD NO-APPLICABLE-METHOD (T)) #<STANDARD-GENERIC-FUNCTION PLAY (2)> 
#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>) [fast-method]

Listing 13-3: Calling a method with an unavailable signature

CLOS provides even more features, such as method inheritance or 
object-based dispatching, rather than using classes. If you’re really curious 
about the many features CLOS provides, I suggest reading “A Brief Guide to 
CLOS” by Jeff Dalton (http://www.aiai.ed.ac.uk/~jeff/clos-guide.html) as a start-
ing point.

Generic Methods with Python 
Python implements a simpler version of this workflow with the singledispatch() 
function, which has been distributed as part of the functools module since 

http://www.aiai.ed.ac.uk/~jeff/clos-guide.html
http://www.aiai.ed.ac.uk/~jeff/clos-guide.html


206   Chapter 13

Python 3.4. In versions 2.6 to 3.3, the singledispatch() function is provided 
through the Python Package Index; for those eager to try it out, just run pip 
install singledispatch.

Listing 13-4 shows a rough equivalent of the Lisp program we built in 
Listing 13-2.

import functools

class SnareDrum(object): pass
class Cymbal(object): pass
class Stick(object): pass
class Brushes(object): pass

@functools.singledispatch
def play(instrument, accessory):
    raise NotImplementedError("Cannot play these")

u @play.register(SnareDrum)
def _(instrument, accessory):
    if isinstance(accessory, Stick):
        return "POC!"
    if isinstance(accessory, Brushes):
        return "SHHHH!"
    raise NotImplementedError("Cannot play these")

@play.register(Cymbal)
def _(instrument, accessory):
    if isinstance(accessory, Brushes):
        return "FRCCCHHT!"
    raise NotImplementedError("Cannot play these")

Listing 13-4: Using singledispatch to dispatch method calls

This listing defines our four classes and a base play() function that raises 
NotImplementedError, indicating that by default we don’t know what to do. 

We then write a specialized version of the play() function for a specific 
instrument, the SnareDrum u. This function checks which accessory type has 
been passed and returns the appropriate sound or raises NotImplementedError 
again if the accessory isn’t recognized.

If we run the program, it works as follows:

>>> play(SnareDrum(), Stick())
'POC!'
>>> play(SnareDrum(), Brushes())
'SHHHH!'
>>> play(Cymbal(), Stick())
Traceback (most recent call last):
NotImplementedError: Cannot play these
>>> play(SnareDrum(), Cymbal())
NotImplementedError: Cannot play these

The singledispatch module checks the class of the first argument 
passed and calls the appropriate version of the play() function. For the 

https://pypi.python.org/pypi/singledispatch/


Write Less, Code More   207

object class, the first defined version of the function is always the one that 
is run. Therefore, if our instrument is an instance of a class that we did not 
register, this base function will be called.

As we saw in the Lisp version of the code, CLOS provides a multiple dis-
patcher that can dispatch based on the type of any of the arguments defined 
in the method prototype, not just the first one. The Python dispatcher 
is named singledispatch for a good reason: it only knows how to dispatch 
based on the first argument.

In addition, singledispatch offers no way to call the parent function 
directly. There is no equivalent of the Python super() function; you’ll have 
to use various tricks to bypass this limitation.

While Python is improving its object system and dispatch mechanism, 
it still lacks a lot of the more advanced features that something like CLOS 
provides out of the box. That makes encountering singledispatch in the wild 
pretty rare. It’s still interesting to know it exists, as you may end up imple-
menting such a mechanism yourself at some point.

Context Managers
The with statement introduced in Python 2.6 is likely to remind old-time 
Lispers of the various with-* macros that are often used in that language. 
Python provides a similar-looking mechanism with the use of objects that 
implement the context management protocol.

If you’ve never used the context management protocol, here’s how it 
works. The code block contained inside the with statement is surrounded by 
two function calls. The object being used in the with statement determines 
the two calls. Those objects are said to implement the context management 
protocol.

Objects like those returned by open() support this protocol; that’s why 
you can write code along these lines:

with open("myfile", "r") as f:
   line = f.readline()

The object returned by open() has two methods: one called __enter__ 
and one called __exit__. These methods are called at the start of the with 
block and at the end of it, respectively.

A simple implementation of a context object is shown in Listing 13-5. 

class MyContext(object):
    def __enter__(self):
        pass

    def __exit__(self, exc_type, exc_value, traceback):
        pass

Listing 13-5: A simple implementation of a context object



208   Chapter 13

This implementation does not do anything, but it is valid and shows the 
signature of the methods that need to be defined to provide a class follow-
ing the context protocol.

The context management protocol might be appropriate to use when 
you identify the following pattern in your code, where it is expected that a 
call to method B must always be done after a call to A:

1. Call method A.

2. Execute some code.

3. Call method B.

The open() function illustrates this pattern well: the constructor that 
opens the file and allocates a file descriptor internally is method A. The 
close() method that releases the file descriptor corresponds to method B. 
Obviously, the close() function is always meant to be called after you instan-
tiate the file object.

It can be tedious to implement this protocol manually, so the contextlib 
standard library provides the contextmanager decorator to make implemen-
tation easier. The contextmanager decorator should be used on a generator 
function. The __enter__ and __exit__ methods will be dynamically imple-
mented for you based on the code that wraps the yield statement of the 
generator.

In Listing 13-6, MyContext is defined as a context manager.

import contextlib

@contextlib.contextmanager
def MyContext():
    print("do something first")
    yield
    print("do something else")

with MyContext():
    print("hello world")

Listing 13-6: Using contextlib.contextmanager

The code before the yield statement will be executed before the with 
statement body is run; the code after the yield statement will be executed 
once the body of the with statement is over. When run, this program out-
puts the following:

do something first
hello world
do something else

There are a couple of things to handle here though. First, it’s possible 
to yield something inside our generator that can be used as part of the 
with block.



Write Less, Code More   209

Listing 13-7 shows how to yield a value to the caller. The keyword as is 
used to store this value in a variable. 

import contextlib

@contextlib.contextmanager
def MyContext():
    print("do something first")
    yield 42
    print("do something else")

with MyContext() as value:
    print(value)

Listing 13-7: Defining a context manager yielding a value

Listing 13-7 shows how to yield a value to the caller. The keyword as is 
used to store this value in a variable. When executed, the code outputs the 
following:

do something first
42
do something else

When using a context manager, you might need to handle exceptions 
that can be raised within the with code block. This can be done by surround-
ing the yield statement with a try...except block, as shown in Listing 13-8.

import contextlib

@contextlib.contextmanager
def MyContext():
    print("do something first")
    try:
        yield 42
    finally:
        print("do something else")

with MyContext() as value:
    print("about to raise")

u     raise ValueError("let's try it")
    print(value)

Listing 13-8: Handling exceptions in a context manager

Here, a ValueError is raised at the beginning of the with code block u; 
Python will propagate this error back to the context manager, and the yield 
statement will appear to raise the exception itself. We enclose the yield state-
ment in try and finally to make sure the final print() is run. 



210   Chapter 13

When executed, Listing 13-8 outputs the following:

do something first
about to raise
do something else
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
ValueError: let's try it

As you can see, the error is raised back to the context manager, and the 
program resumes and finishes execution because it ignored the exception 
using a try...finally block.

In some contexts, it can be useful to use several context managers at 
the same time, for example, when opening two files at the same time to 
copy their content, as shown in Listing 13-9.

with open("file1", "r") as source:
    with open("file2", "w") as destination:
        destination.write(source.read())

Listing 13-9: Opening two files at the same time to copy content

That being said, since the with statement supports multiple arguments, 
it’s actually more efficient to write a version using a single with, as shown in 
Listing 13-10.

with open("file1", "r") as source, open("file2", "w") as destination:
    destination.write(source.read())

Listing 13-10: Opening two files at the same time using only one with statement

Context managers are extremely powerful design patterns that help 
to ensure your code flow is always correct, no matter what exception might 
occur. They can help to provide a consistent and clean programming inter-
face in many situations in which code should be wrapped by other code and 
contextlib.contextmanager.

Less Boilerplate with attr
Writing Python classes can be cumbersome. You’ll often find yourself repeat-
ing just a few patterns because there are no other options. One of the most 
common examples, as illustrated in Listing 13-11, is when initializing an 
object with a few attributes passed to the constructor.

class Car(object):
    def __init__(self, color, speed=0):
        self.color = color
        self.speed = speed

Listing 13-11: Common class initialization boilerplate



Write Less, Code More   211

The process is always the same: you copy the value of the argument 
passed to the __init__ function to a few attributes stored in the object. 
Sometimes you’ll also have to check the value that is passed, compute a 
default, and so on.

Obviously, you also want your object to be represented correctly if 
printed, so you’ll have to implement a __repr__ method. There’s a chance 
some of your classes are simple enough to be converted to dictionaries for 
serialization. Things become even more complicated when talking about 
comparison and hashability (the ability to use hash on an object and store it 
in a set).

In reality, most Python programmers do none of this, because the 
burden of writing all those checks and methods is too heavy, especially 
when you’re not always sure you’ll need them. For example, you might find 
that __repr__ is useful in your program only that one time you’re trying to 
debug or trace it and decide to print objects in the standard output—and 
no other times.

The attr library aims for a straightforward solution by providing a 
generic boilerplate for all your classes and generating much of the code for 
you. You can install attr using pip with the command pip install attr. Get 
ready to enjoy!

Once installed, the attr.s decorator is your entry point into the wonder-
ful world of attr. Use it above a class declaration and then use the function 
attr.ib() to declare attributes in your classes. Listing 13-12 shows a way to 
rewrite Listing 13-11 using attr.

import attr

@attr.s
class Car(object):
    color = attr.ib()
    speed = attr.ib(default=0)

Listing 13-12: Using attr.ib() to declare attributes

When declared this way, the class automatically gains a few useful meth-
ods for free, such as __repr__, which is called to represent objects when they 
are printed on stdout in the Python interpreter:

>>> Car("blue")
Car(color='blue', speed=0)

This output is cleaner than the default that __repr__ would have printed: 

<__main__.Car object at 0x104ba4cf8>.

You can also add more validation on your attributes by using the validator 
and converter keyword arguments.

http://www.attrs.org/


212   Chapter 13

Listing 13-13 shows how the attr.ib() function can be used to declare 
an attribute with some constraints. 

import attr

@attr.s
class Car(object):
    color = attr.ib(converter=str)
    speed = attr.ib(default=0)

    @speed.validator
    def speed_validator(self, attribute, value):
        if value < 0:
            raise ValueError("Value cannot be negative")

Listing 13-13: Using attr.ib() with its converter argument

The converter argument manages the conversion of whatever is passed to 
the constructor. The validator() function can be passed as an argument to 
attr.ib() or used as a decorator, as shown in Listing 13-13. 

The attr module provides a few validators of its own (for example, 
attr.validators.instance_of() to check the type of the attribute), so be sure 
to check them out before wasting your time building your own.

The attr module also provides tweaks to make your object hashable so 
it can be used in a set or a dictionary key: just pass frozen=True to attr.s() to 
make the class instances immutable.

Listing 13-14 shows how using the frozen parameter changes the behav-
ior of the class.

>>> import attr
>>> @attr.s(frozen=True)
... class Car(object):
...     color = attr.ib()
...
>>> {Car("blue"), Car("blue"), Car("red")}
{Car(color='red'), Car(color='blue')}
>>> Car("blue").color = "red"
attr.exceptions.FrozenInstanceError

Listing 13-14: Using frozen=True

Listing 13-14 shows how using the frozen parameter changes the behavior 
of the Car class: it can be hashed and therefore stored in a set, but objects can-
not be modified anymore.

In summary, attr provides the implementation for a ton of useful meth-
ods, thereby saving you from writing them yourself. I highly recommend 
leveraging attr for its efficiency when building your classes and modeling 
your software.



Write Less, Code More   213

Summary
Congratulations! You made it to the end of the book. You’ve just upped 
your Python game and have a better idea of how to write efficient and pro-
ductive Python code. I hope you enjoyed reading this book as much as I 
enjoyed writing it.

Python is a wonderful language and can be used in many different 
fields, and there are many more areas of Python that we did not touch on 
in this book. But every book needs an ending, right?

I highly recommend profiting from open source projects by reading the 
available source code out there and contributing to it. Having your code 
reviewed and discussed by other developers is often a great way to learn.

Happy hacking!





Symbols & Numbers
__import__, 16–17
__init__.py, 8
__slots__, 163–167
__repr__, 211

A
abstract syntax tree (AST),  

135–141, 147
walking through, 139

Advanced Message Queuing Protocol 
(AMQP), 184–186

aiohttp library, 183
all() function, 128
ambiguous times, 55
any() function, 128
API (application programming 

interface)
designing, 45
documentation, 41–42, 46–47
managing changes, 40–41, 46

architecture
event-driven, 181
service-oriented, 184

AST (abstract syntax tree),  
135–141, 147

asyncio module, 182–184
attr module, 210–212

B
bisect module, 159–160

bisect.bisect() function, 159
bisect.bisect_left() function, 160
bisect.insort() function, 160

buffer protocol, 170–174
bytearray, 173–174

C
C10K, 181
cache, 167–168
CLOS (Common Lisp Object System), 

203–205
closure, 159
Coghlan, Nick, 74
collections module, 153

Counter() method, 154
defaultdict, 153
namedtuple class, 165

Collins, Robert, 97–98
Common Lisp Object System (CLOS), 

203–205
console scripts, 69–70
contextlib, 208–210
context management protocol, 207–210
context managers, 207–210
copy.deepcopy(), 176
Counter(), 154
coverage tool, 88–89
cProfile module, 154–155
CPython, 163, 169, 176, 178–179

D
databases, 187–199

backends, 190
existing time zones, 52
relational database management 

system (RDBMS), 187, 
195–197

data structures, 152–154
datetime, 50–51, 54–55
dateutil, 52–53, 55
debtcollector library, 14, 44
decorators, 100–107, 142–143

class decorators, 103
creation, 100–101
stacking, 102, 103

I n d e x



216   Index

defaultdict, 153
de Vienne, Christophe, 45–47
dis module, 156–158

dis.dis() function, 156
distribution, 57–74

building setup.py, 58–59
format, 61
packaging with setup.cfg, 60–61
Wheel standard, 61–63

distutils library, 58
doctest module, 38
documentation, 34–35

E
entry points, 67

visualization, 68
enumerate() function, 127
event-driven architecture, 181–182

F
filter() function, 127
first() function, 130–131
fixtures, 81–82
flake8, 12, 95, 140–141
Fontaine, Dimitri, 195–199
frameworks, 26–27, 31
functional programming, 119–121
functools module, 105

partial() method, 131–132
update_wrapper() function, 105
wraps, 106

G
generators, 121–123

inspecting, 124–125
generic methods, 205
GitHub, 35
global interpreter lock (GIL), 13, 169, 

176, 178

H
Harlow, Joshua, 13–14
Hellmann, Doug, 27–31
hierarchy, 7
Hy, 18, 145–149

I
import hook, 18
import keyword, 16–17
inspect module, 106–107, 124
interprocess communication, 185–186
iso8601 module, 54–55
itertools module, 132–133

J
JSON, 191, 193–194 
just-in-time (JIT) compilation, 14, 169
Jython, 178

K
KCacheGrind, 155–156

L
lambda() function, 131
layout, 7
least recently used (LRU) cache, 

167–168
libraries, 15

API, 46
external, 22, 23, 26
standard, 20, 28–29

Lisp, 145–146, 147–148, 203
list comprehension (listcomp), 125–126

M
map() method, 127
memoization, 167–168
memoryview, 171
meta path finder, 19–20
method resolution order (MRO), 115
methods, 107–117

abstract, 110–113
class, 109–110, 112–113
generic, 205–207
mixing, 112–113
static, 108–109, 112–113

mock library, 84–88
modernize module, 203
modules included in the standard 

library, 21
multiple inheritance, 114
multiprocessing, 179–181, 185
multithreading, 178–181



Index   217

N
namedtuple class, 165–166
next() function, 121–122

O
object relational mapping (ORM), 

188, 197–198
OpenStack, 1, 13–14, 22, 29, 97
optimization, 151–174
ordered lists, 159

P
packaging solutions, 74
pbr (Python Build Reasonableness), 60
PEP (Python Enhancement Proposal)

PEP 440, 8–10
PEP 7, 11
PEP 8, 10–12
pep8, 10

pip, 24–26
plugins, 71
poll() function, 181
PostgreSQL, 190–194, 195–196, 

198–199
profiling, 154
psycopg2 library, 192
pure functions, 120
pyflakes, 12
pylint, 12
PyPI, 24, 64–67
pyprof2calltree, 155
PyPy, 169
pytest, 76–81

coverage, 88
fixtures, 81
mark, 80
pattern, 79
parallel, 81–82
scenarios, 83

PYTHONPATH, 18
Python versions, 5–6, 30, 201–203

Python 2, 6
Python 3, 6, 13, 23, 27, 30

R
relational database management 

system (RDBMS), 187, 
195–197

REpresentational State Transfer 
(REST), 184 

reStructured Text (reST), 34–36 

S
scaling, 177–186
scenarios, 83
select() function, 181–182
semantic versioning, 9
service-oriented architecture, 184
setup.cfg, 59–61
setup.py, 7, 57–61
setuptools library, 58–59, 67
singledispatch() function, 205–207
Single Responsibility Principle 

(SRP), 30
six module, 201–202
sockets, 172–173
sorted() function, 128
sorted list, 159–160
Sphinx, 33–40, 42

autodoc, 36–37
doctest, 38–39

SQL, 187–190, 197–198. See also 
PostgreSQL

SQLAlchemy, 22, 30, 190
Stinner, Victor, 174–176
streaming, 190
strings, 202
super() method, 114–117
sys module, 17
sys.path variable, 18

T
Tagliamonte, Paul, 147–149
taskflow, 14
testing

policy, 96, 97–98
skipping, 78
unit, 75–76

threads, 178
timeit module, 175
timestamps, 49–56
time zones, 49–50, 52–54
tox, 92–96
tox-travis, 97
Travis CI, 96



218   Index

U
Unicode, 202
update_wrapper() function, 105

V
versions

API, 41
numbering, 8–10
Python, 5, 95

virtual environments, 90–96
re-creating, 94
setting up, 91–92
tox, 92–93

W
warnings, 43–44
Web Server Gateway Interface 

(WSGI), 29
Wheel, 61–63

universal, 63
with, 207
wraps decorator, 106

Y
yield, 121–123

Z
zero copy, 170
ZeroMQ, 185–186
zip() function, 129



Serious Python is set in New Baskerville, Futura, Dogma, and The Sans Mono 
Condensed. 





UPDATES
Visit https://nostarch.com/seriouspython/ for updates, errata, and other information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

ELOQUENT JAVASCRIPT,  
3RD EDITION
A Modern Introduction to Programming
by marijn haverbeke

december 2018, 472 pp., $39.95
isbn 978-1-59327-950-9

PYTHON CRASH COURSE,  
2ND EDITION
A Hands-On, Project-Based Introduction  
to Programming
by eric matthes

may 2019, 544 pp., $39.95
isbn 978-1-59327-928-8

THE RUST PROGRAMMING 
LANGUAGE 
(Covers Rust 2018)
by steve klabnik and  
carol nichols

august 2019, 560 pp., $39.95
isbn 978-1-71850-044-0

LAND OF LISP
Learn to Program in Lisp, One Game  
at a Time!
by conrad barski

october 2010, 504 pp., $49.95
isbn 978-1-59327-281-4

PRACTICAL SQL
A Beginner’s Guide to Storytelling  
with Data
by anthony debarros

may 2018, 392 pp., $39.95
isbn 978-1-59327-827-4

PYTHON FLASH CARDS
Syntax, Concepts, and Examples
by eric matthes

january 2019, 101 cards, $27.95
isbn 978-1-59327-896-0

More no-nonsense books from NO STARCH PRESS







SHELVE IN:
PROGRAM

M
ING LANGUAGES/

PYTHON

$34.95 ($45.95 CDN)

P R O G R A M S .
B U I L D  B E T T E R

C O D E  M O R E .
W R I T E  L E S S .

P R O G R A M S .
B U I L D  B E T T E R

C O D E  M O R E .
W R I T E  L E S S .

Sharpen your Python skills as you dive deep into the 
Python programming language with Serious Python. 
Written for developers and experienced programmers, 
Serious Python brings together more than 15 years of 
Python experience to teach you how to avoid common 
mistakes, write code more efficiently, and build better 
programs in less time. You’ll cover a range of advanced 
topics like multithreading and memoization, get advice 
from experts on things like designing APIs and dealing 
with databases, and learn Python internals to give you a 
deeper understanding of the language itself. 

You’ll first learn how to start a project and tackle 
topics like versioning, coding style, and automated 
checks. Then you’ll look at how to define functions 
efficiently, pick the right data structures and libraries, 
build future-proof programs, package your software 
for distribution, and optimize your programs down to 
the bytecode. You’ll also learn how to:

• Create and use effective decorators and methods, 
including abstract, static, and class methods

• Employ Python for functional programming using 
generators, pure functions, and functional functions

• Extend flake8 to work with the abstract syntax tree 
(AST) to introduce more sophisticated automatic 
checks 

• Apply dynamic performance analysis to identify 
bottlenecks in your code

• Work with relational databases and effectively 
manage and stream data with PostgreSQL

Take your Python skills from good to great. Learn from 
the experts and get seriously good at Python with 
Serious Python!

A B O U T  T H E  A U T H O R

Julien Danjou is a principal software engineer at Red 
Hat and a contributor to OpenStack, the largest existing 
open source project written in Python. He has been a 
free software and open source hacker for the past 
15 years.

www.nostarch.com

TH E  F I N EST  I N  G E E K  E NTE RTA I N M E NT ™

S
E

R
IO

U
S

 P
Y

T
H

O
N

S
E

R
IO

U
S

 P
Y

T
H

O
N

D
A

N
JO

U

S E R I O U S
P Y T H O N
S E R I O U S
P Y T H O N

B L A C K - B E L T  A D V I C E  O N  D E P L O Y M E N T ,

S C A L A B I L I T Y ,  T E S T I N G ,  A N D  M O R E

J U L I E N  D A N J O U

COVERS
PYTHON 2 AND 3


	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who Should Read This Book and Why
	About This Book

	Chapter 1: Starting Your Project
	Versions of Python
	Laying Out Your Project 
	What to Do
	What Not to Do 

	Version Numbering
	Coding Style and Automated Checks
	Tools to Catch Style Errors
	Tools to Catch Coding Errors

	Interview with Joshua Harlow

	Chapter 2: Modules, Libraries, and Frameworks
	The Import System
	The sys Module
	Import Paths
	Custom Importers
	Meta Path Finders

	Useful Standard Libraries
	External Libraries
	The External Libraries Safety Checklist
	Protecting Your Code with an API Wrapper

	Package Installation: Getting More from pip
	Using and Choosing Frameworks
	Doug Hellmann, Python Core Developer, on Python Libraries

	Chapter 3: Documentation and Good API Practice 
	Documenting with Sphinx
	Getting Started with Sphinx and reST
	Sphinx Modules
	Writing a Sphinx Extension
	Managing Changes to Your APIs
	Numbering API Versions
	Documenting Your API Changes
	Marking Deprecated Functions with the warnings Module

	Summary
	Christophe de Vienne on Developing APIs

	Chapter 4: Handling Timestamps and Time Zones
	The Problem of Missing Time Zones
	Building Default datetime Objects
	Time Zone–Aware Timestamps with dateutil
	Serializing Time Zone–Aware datetime Objects
	Solving Ambiguous Times
	Summary

	Chapter 5: Distributing Your Software
	A Bit of setup.py History
	Packaging with setup.cfg
	The Wheel Format Distribution Standard
	Sharing Your Work with the World
	Entry Points
	Visualizing Entry Points
	Using Console Scripts
	Using Plugins and Drivers

	Summary
	Nick Coghlan on Packaging

	Chapter 6: Unit Testing
	The Basics of Testing
	Some Simple Tests
	Skipping Tests
	Running Particular Tests
	Running Tests in Parallel
	Creating Objects Used in Tests with Fixtures
	Running Test Scenarios
	Controlled Tests Using Mocking
	Revealing Untested Code with coverage

	Virtual Environments
	Setting Up a Virtual Environment
	Using virtualenv with tox
	Re-creating an Environment
	Using Different Python Versions 
	Integrating Other Tests

	Testing Policy	
	Robert Collins on Testing

	Chapter 7: Methods and Decorators
	Decorators and When to Use Them
	Creating Decorators
	Writing Decorators
	Stacking Decorators
	Writing Class Decorators

	How Methods Work in Python
	Static Methods
	Class Methods
	Abstract Methods
	Mixing Static, Class, and Abstract Methods
	Putting Implementations in Abstract Methods
	The Truth About super

	Summary

	Chapter 8: Functional Programming
	Creating Pure Functions
	Generators
	Creating a Generator
	Returning and Passing Values with yield
	Inspecting Generators

	List Comprehensions
	Functional Functions Functioning
	Applying Functions to Items with map() 
	Filtering Lists with filter()
	Getting Indexes with enumerate()
	Sorting a List with sorted()
	Finding Items That Satisfy Conditions with any() and all()
	Combining Lists with zip()
	A Common Problem Solved
	Useful itertools Functions

	Summary

	Chapter 9: The Abstract Syntax Tree, Hy, and Lisp-like Attributes
	Looking at the AST
	Writing a Program Using the AST
	The AST Objects
	Walking Through an AST

	Extending flake8 with AST Checks
	Writing the Class
	Ignoring Irrelevant Code
	Checking for the Correct Decorator
	Looking for self

	A Quick Introduction to Hy
	Summary
	Paul Tagliamonte on the AST and Hy

	Chapter 10: Performances and Optimizations
	Data Structures
	Understanding Behavior Through Profiling
	cProfile
	Disassembling with the dis Module

	Defining Functions Efficiently
	Ordered Lists and bisect
	namedtuple and Slots
	Memoization
	Faster Python with PyPy
	Achieving Zero Copy with the Buffer Protocol
	Summary
	Victor Stinner on Optimization

	Chapter 11: Scaling and Architecture
	Multithreading in Python and Its Limitations
	Multiprocessing vs. Multithreading
	Event-Driven Architecture
	Other Options and asyncio
	Service-Oriented Architecture
	Interprocess Communication with ZeroMQ
	Summary

	Chapter 12: Managing Relational Databases
	RDBMSs, ORMs, and When to Use Them
	Database Backends
	Streaming Data with Flask and PostgreSQL
	Writing the Data-Streaming Application
	Building the Application

	Dimitri Fontaine on Databases

	Chapter 13: Write Less, Code More
	Using six for Python 2 and 3 Support
	Strings and Unicode
	Handling Python Modules Moves
	The modernize Module

	Using Python Like Lisp to Make a Single Dispatcher
	Creating Generic Methods in Lisp
	Generic Methods with Python 

	Context Managers
	Less Boilerplate with attr
	Summary

	Index



